forked from YongJie-Xie/PaddleocrAPI
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage.py
422 lines (348 loc) · 12.4 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains some common interfaces for image preprocess.
Many users are confused about the image layout. We introduce
the image layout as follows.
- CHW Layout
- The abbreviations: C=channel, H=Height, W=Width
- The default layout of image opened by cv2 or PIL is HWC.
PaddlePaddle only supports the CHW layout. And CHW is simply
a transpose of HWC. It must transpose the input image.
- Color format: RGB or BGR
OpenCV use BGR color format. PIL use RGB color format. Both
formats can be used for training. Noted that, the format should
be keep consistent between the training and inference period.
"""
from __future__ import print_function
import six
import numpy as np
# FIXME(minqiyang): this is an ugly fix for the numpy bug reported here
# https://github.com/numpy/numpy/issues/12497
if six.PY3:
import subprocess
import sys
import os
interpreter = sys.executable
# Note(zhouwei): if use Python/C 'PyRun_SimpleString', 'sys.executable'
# will be the C++ execubable on Windows
if sys.platform == 'win32' and 'python.exe' not in interpreter:
interpreter = sys.exec_prefix + os.sep + 'python.exe'
import_cv2_proc = subprocess.Popen([interpreter, "-c", "import cv2"],
stdin=subprocess.PIPE, # <-- here
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True) # <-- here
out, err = import_cv2_proc.communicate()
retcode = import_cv2_proc.poll()
if retcode != 0:
cv2 = None
else:
try:
import cv2
except ImportError:
cv2 = None
else:
try:
import cv2
except ImportError:
cv2 = None
import os
import tarfile
import six.moves.cPickle as pickle
__all__ = []
def _check_cv2():
if cv2 is None:
import sys
sys.stderr.write(
'''Warning with paddle image module: opencv-python should be imported,
or paddle image module could NOT work; please install opencv-python first.'''
)
return False
else:
return True
def batch_images_from_tar(data_file,
dataset_name,
img2label,
num_per_batch=1024):
"""
Read images from tar file and batch them into batch file.
:param data_file: path of image tar file
:type data_file: string
:param dataset_name: 'train','test' or 'valid'
:type dataset_name: string
:param img2label: a dic with image file name as key
and image's label as value
:type img2label: dic
:param num_per_batch: image number per batch file
:type num_per_batch: int
:return: path of list file containing paths of batch file
:rtype: string
"""
batch_dir = data_file + "_batch"
out_path = "%s/%s_%s" % (batch_dir, dataset_name, os.getpid())
meta_file = "%s/%s_%s.txt" % (batch_dir, dataset_name, os.getpid())
if os.path.exists(out_path):
return meta_file
else:
os.makedirs(out_path)
tf = tarfile.open(data_file)
mems = tf.getmembers()
data = []
labels = []
file_id = 0
for mem in mems:
if mem.name in img2label:
data.append(tf.extractfile(mem).read())
labels.append(img2label[mem.name])
if len(data) == num_per_batch:
output = {}
output['label'] = labels
output['data'] = data
pickle.dump(output,
open('%s/batch_%d' % (out_path, file_id), 'wb'),
protocol=2)
file_id += 1
data = []
labels = []
if len(data) > 0:
output = {}
output['label'] = labels
output['data'] = data
pickle.dump(output,
open('%s/batch_%d' % (out_path, file_id), 'wb'),
protocol=2)
with open(meta_file, 'a') as meta:
for file in os.listdir(out_path):
meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n")
return meta_file
def load_image_bytes(bytes, is_color=True):
"""
Load an color or gray image from bytes array.
Example usage:
.. code-block:: python
with open('cat.jpg') as f:
im = load_image_bytes(f.read())
:param bytes: the input image bytes array.
:type bytes: str
:param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will
load and return a gray image.
:type is_color: bool
"""
assert _check_cv2() is True
flag = 1 if is_color else 0
file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
img = cv2.imdecode(file_bytes, flag)
return img
def load_image(file, is_color=True):
"""
Load an color or gray image from the file path.
Example usage:
.. code-block:: python
im = load_image('cat.jpg')
:param file: the input image path.
:type file: string
:param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will
load and return a gray image.
:type is_color: bool
"""
assert _check_cv2() is True
# cv2.IMAGE_COLOR for OpenCV3
# cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version
# cv2.IMAGE_GRAYSCALE for OpenCV3
# cv2.CV_LOAD_IMAGE_GRAYSCALE for older OpenCV Version
# Here, use constant 1 and 0
# 1: COLOR, 0: GRAYSCALE
flag = 1 if is_color else 0
im = cv2.imread(file, flag)
return im
def resize_short(im, size):
"""
Resize an image so that the length of shorter edge is size.
Example usage:
.. code-block:: python
im = load_image('cat.jpg')
im = resize_short(im, 256)
:param im: the input image with HWC layout.
:type im: ndarray
:param size: the shorter edge size of image after resizing.
:type size: int
"""
assert _check_cv2() is True
h, w = im.shape[:2]
h_new, w_new = size, size
if h > w:
h_new = size * h // w
else:
w_new = size * w // h
im = cv2.resize(im, (w_new, h_new), interpolation=cv2.INTER_CUBIC)
return im
def to_chw(im, order=(2, 0, 1)):
"""
Transpose the input image order. The image layout is HWC format
opened by cv2 or PIL. Transpose the input image to CHW layout
according the order (2,0,1).
Example usage:
.. code-block:: python
im = load_image('cat.jpg')
im = resize_short(im, 256)
im = to_chw(im)
:param im: the input image with HWC layout.
:type im: ndarray
:param order: the transposed order.
:type order: tuple|list
"""
assert len(im.shape) == len(order)
im = im.transpose(order)
return im
def center_crop(im, size, is_color=True):
"""
Crop the center of image with size.
Example usage:
.. code-block:: python
im = center_crop(im, 224)
:param im: the input image with HWC layout.
:type im: ndarray
:param size: the cropping size.
:type size: int
:param is_color: whether the image is color or not.
:type is_color: bool
"""
h, w = im.shape[:2]
h_start = (h - size) // 2
w_start = (w - size) // 2
h_end, w_end = h_start + size, w_start + size
if is_color:
im = im[h_start:h_end, w_start:w_end, :]
else:
im = im[h_start:h_end, w_start:w_end]
return im
def random_crop(im, size, is_color=True):
"""
Randomly crop input image with size.
Example usage:
.. code-block:: python
im = random_crop(im, 224)
:param im: the input image with HWC layout.
:type im: ndarray
:param size: the cropping size.
:type size: int
:param is_color: whether the image is color or not.
:type is_color: bool
"""
h, w = im.shape[:2]
h_start = np.random.randint(0, h - size + 1)
w_start = np.random.randint(0, w - size + 1)
h_end, w_end = h_start + size, w_start + size
if is_color:
im = im[h_start:h_end, w_start:w_end, :]
else:
im = im[h_start:h_end, w_start:w_end]
return im
def left_right_flip(im, is_color=True):
"""
Flip an image along the horizontal direction.
Return the flipped image.
Example usage:
.. code-block:: python
im = left_right_flip(im)
:param im: input image with HWC layout or HW layout for gray image
:type im: ndarray
:param is_color: whether input image is color or not
:type is_color: bool
"""
if len(im.shape) == 3 and is_color:
return im[:, ::-1, :]
else:
return im[:, ::-1]
def simple_transform(im,
resize_size,
crop_size,
is_train,
is_color=True,
mean=None):
"""
Simply data argumentation for training. These operations include
resizing, croping and flipping.
Example usage:
.. code-block:: python
im = simple_transform(im, 256, 224, True)
:param im: The input image with HWC layout.
:type im: ndarray
:param resize_size: The shorter edge length of the resized image.
:type resize_size: int
:param crop_size: The cropping size.
:type crop_size: int
:param is_train: Whether it is training or not.
:type is_train: bool
:param is_color: whether the image is color or not.
:type is_color: bool
:param mean: the mean values, which can be element-wise mean values or
mean values per channel.
:type mean: numpy array | list
"""
im = resize_short(im, resize_size)
if is_train:
im = random_crop(im, crop_size, is_color=is_color)
if np.random.randint(2) == 0:
im = left_right_flip(im, is_color)
else:
im = center_crop(im, crop_size, is_color=is_color)
if len(im.shape) == 3:
im = to_chw(im)
im = im.astype('float32')
if mean is not None:
mean = np.array(mean, dtype=np.float32)
# mean value, may be one value per channel
if mean.ndim == 1 and is_color:
mean = mean[:, np.newaxis, np.newaxis]
elif mean.ndim == 1:
mean = mean
else:
# elementwise mean
assert len(mean.shape) == len(im)
im -= mean
return im
def load_and_transform(filename,
resize_size,
crop_size,
is_train,
is_color=True,
mean=None):
"""
Load image from the input file `filename` and transform image for
data argumentation. Please refer to the `simple_transform` interface
for the transform operations.
Example usage:
.. code-block:: python
im = load_and_transform('cat.jpg', 256, 224, True)
:param filename: The file name of input image.
:type filename: string
:param resize_size: The shorter edge length of the resized image.
:type resize_size: int
:param crop_size: The cropping size.
:type crop_size: int
:param is_train: Whether it is training or not.
:type is_train: bool
:param is_color: whether the image is color or not.
:type is_color: bool
:param mean: the mean values, which can be element-wise mean values or
mean values per channel.
:type mean: numpy array | list
"""
im = load_image(filename, is_color)
im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean)
return im