diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/BinaryClassificationMetrics.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/BinaryClassificationMetrics.scala index ced042e2f96ca..c1d1a224817e8 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/BinaryClassificationMetrics.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/BinaryClassificationMetrics.scala @@ -22,6 +22,7 @@ import org.apache.spark.Logging import org.apache.spark.SparkContext._ import org.apache.spark.mllib.evaluation.binary._ import org.apache.spark.rdd.{RDD, UnionRDD} +import org.apache.spark.sql.DataFrame /** * :: Experimental :: @@ -53,6 +54,13 @@ class BinaryClassificationMetrics( */ def this(scoreAndLabels: RDD[(Double, Double)]) = this(scoreAndLabels, 0) + /** + * An auxiliary constructor taking a DataFrame. + * @param scoreAndLabels a DataFrame with two double columns: score and label + */ + private[mllib] def this(scoreAndLabels: DataFrame) = + this(scoreAndLabels.map(r => (r.getDouble(0), r.getDouble(1)))) + /** Unpersist intermediate RDDs used in the computation. */ def unpersist() { cumulativeCounts.unpersist() diff --git a/python/docs/pyspark.mllib.rst b/python/docs/pyspark.mllib.rst index b706c5e376ef4..15101470afc07 100644 --- a/python/docs/pyspark.mllib.rst +++ b/python/docs/pyspark.mllib.rst @@ -16,6 +16,13 @@ pyspark.mllib.clustering module :members: :undoc-members: +pyspark.mllib.evaluation module +------------------------------- + +.. automodule:: pyspark.mllib.evaluation + :members: + :undoc-members: + pyspark.mllib.feature module ------------------------------- diff --git a/python/pyspark/mllib/evaluation.py b/python/pyspark/mllib/evaluation.py new file mode 100644 index 0000000000000..16cb49cc0cfff --- /dev/null +++ b/python/pyspark/mllib/evaluation.py @@ -0,0 +1,83 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from pyspark.mllib.common import JavaModelWrapper +from pyspark.sql import SQLContext +from pyspark.sql.types import StructField, StructType, DoubleType + + +class BinaryClassificationMetrics(JavaModelWrapper): + """ + Evaluator for binary classification. + + >>> scoreAndLabels = sc.parallelize([ + ... (0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)], 2) + >>> metrics = BinaryClassificationMetrics(scoreAndLabels) + >>> metrics.areaUnderROC() + 0.70... + >>> metrics.areaUnderPR() + 0.83... + >>> metrics.unpersist() + """ + + def __init__(self, scoreAndLabels): + """ + :param scoreAndLabels: an RDD of (score, label) pairs + """ + sc = scoreAndLabels.ctx + sql_ctx = SQLContext(sc) + df = sql_ctx.createDataFrame(scoreAndLabels, schema=StructType([ + StructField("score", DoubleType(), nullable=False), + StructField("label", DoubleType(), nullable=False)])) + java_class = sc._jvm.org.apache.spark.mllib.evaluation.BinaryClassificationMetrics + java_model = java_class(df._jdf) + super(BinaryClassificationMetrics, self).__init__(java_model) + + def areaUnderROC(self): + """ + Computes the area under the receiver operating characteristic + (ROC) curve. + """ + return self.call("areaUnderROC") + + def areaUnderPR(self): + """ + Computes the area under the precision-recall curve. + """ + return self.call("areaUnderPR") + + def unpersist(self): + """ + Unpersists intermediate RDDs used in the computation. + """ + self.call("unpersist") + + +def _test(): + import doctest + from pyspark import SparkContext + import pyspark.mllib.evaluation + globs = pyspark.mllib.evaluation.__dict__.copy() + globs['sc'] = SparkContext('local[4]', 'PythonTest') + (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) + globs['sc'].stop() + if failure_count: + exit(-1) + + +if __name__ == "__main__": + _test() diff --git a/python/run-tests b/python/run-tests index a2c2f37a54eda..b7630c356cfae 100755 --- a/python/run-tests +++ b/python/run-tests @@ -75,6 +75,7 @@ function run_mllib_tests() { echo "Run mllib tests ..." run_test "pyspark/mllib/classification.py" run_test "pyspark/mllib/clustering.py" + run_test "pyspark/mllib/evaluation.py" run_test "pyspark/mllib/feature.py" run_test "pyspark/mllib/linalg.py" run_test "pyspark/mllib/rand.py"