-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize_test_queries.py
266 lines (211 loc) · 8.39 KB
/
visualize_test_queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import os
import sys
import math
import random
import numpy as np
import pandas as pd
import scipy.io
import torch
from torch.autograd import Variable
from torchvision import transforms
import matplotlib.pyplot as plt
import tqdm
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(SCRIPT_DIR))
from load_model import load_model_from_opts
from dataset import ImageDataset
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(
description="Show sample queries and retrieved gallery images for a reid model")
parser.add_argument("--model_opts", required=True,
type=str, help="model to use, if --use_saved_mat is provided then this is not used.")
parser.add_argument("--checkpoint", required=True,
type=str, help="checkpoint to load for model.")
parser.add_argument("--query_csv_path", default="../../datasets/id_split_cityflow_query.csv",
type=str, help="csv to contain query image data")
parser.add_argument("--gallery_csv_path", default="../../datasets/id_split_cityflow_gallery.csv",
type=str, help="csv to contain gallery image data")
parser.add_argument("--data_dir", type=str, default="../../datasets/",
help="root directory for image datasets")
parser.add_argument("--input_size", type=int, default=224,
help="Image input size for the model")
parser.add_argument("--batchsize", type=int, default=64)
parser.add_argument("--num_images", type=int, default=29,
help="number of gallery images to show")
parser.add_argument("--imgs_per_row", type=int, default=6)
parser.add_argument("--use_saved_mat", action="store_true",
help="Use precomputed features from a previous test.py run: pytorch_result.mat.")
args = parser.parse_args()
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
h, w = args.input_size, args.input_size
######################################################################
# Load Data
# ---------
#
data_transforms = transforms.Compose([
transforms.Resize((h, w), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
query_df = pd.read_csv(args.query_csv_path)
gallery_df = pd.read_csv(args.gallery_csv_path)
classes = list(pd.concat([query_df["id"], gallery_df["id"]]).unique())
use_cam = "cam" in query_df and "cam" in gallery_df
image_datasets = {
"query": ImageDataset(args.data_dir, query_df, "id", classes, transform=data_transforms),
"gallery": ImageDataset(args.data_dir, gallery_df, "id", classes, transform=data_transforms),
}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batchsize,
shuffle=False, num_workers=2) for x in ['gallery', 'query']}
######################################################################
# Extract feature
# ----------------------
#
# Extract feature from a trained model.
#
def fliplr(img):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3) - 1, -1, -1).long() # N x C x H x W
inv_idx = inv_idx.to(img.device)
img_flip = img.index_select(3, inv_idx)
return img_flip
def extract_features(model, dataloader):
img_count = 0
dummy = next(iter(dataloader))[0].to(device)
output = model(dummy)
feature_dim = output.shape[1]
labels = []
for idx, data in enumerate(tqdm.tqdm(dataloader)):
X, y = data
n, c, h, w = X.size()
img_count += n
ff = torch.FloatTensor(n, feature_dim).zero_().to(device)
for lab in y:
labels.append(lab)
for i in range(2):
if(i == 1):
X = fliplr(X)
input_X = Variable(X.to(device))
outputs = model(input_X)
ff += outputs
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
if idx == 0:
features = torch.FloatTensor(len(dataloader.dataset), ff.shape[1])
start = idx * args.batchsize
end = min((idx + 1) * args.batchsize, len(dataloader.dataset))
features[start:end, :] = ff
return features, labels
def extract_feature(model, img):
if len(img.shape) == 3:
img = torch.unsqueeze(img, 0)
img = img.to(device)
feature = model(img).reshape(-1)
img = fliplr(img)
flipped_feature = model(img).reshape(-1)
feature += flipped_feature
fnorm = torch.norm(feature, p=2)
return feature.div(fnorm)
def get_scores(query_feature, gallery_features):
query = query_feature.view(-1, 1)
score = torch.mm(gallery_features, query)
score = score.squeeze(1).cpu()
score = score.numpy()
return score
def show_query_result(axes, query_img, gallery_imgs, query_label, gallery_labels):
query_trans = transforms.Pad(4, 0)
good_trans = transforms.Pad(4, (0, 255, 0))
bad_trans = transforms.Pad(4, (255, 0, 0))
for idx, img in enumerate([query_img] + gallery_imgs):
img = img.resize((128, 128))
if idx == 0:
img = query_trans(img)
elif query_label == gallery_labels[idx - 1]:
img = good_trans(img)
else:
img = bad_trans(img)
ax = axes.flat[idx]
ax.imshow(img)
for i in range(len(axes.flat)):
ax = axes.flat[i]
ax.set_xticks([])
ax.set_xticks([], minor=True)
ax.set_yticks([])
ax.set_yticks([], minor=True)
ax.axis("off")
######################################################################
# Run queries
# -----------
#
if args.use_saved_mat:
saved_res = scipy.io.loadmat("pytorch_result.mat")
gallery_features = torch.Tensor(saved_res["gallery_f"])
gallery_labels = saved_res["gallery_label"].reshape(-1)
query_features = torch.Tensor(saved_res["query_f"])
query_labels = saved_res["query_label"].reshape(-1)
else:
model = load_model_from_opts(
args.model_opts, args.checkpoint, remove_classifier=True)
model.eval()
model.to(device)
print("Computing gallery features ...")
with torch.no_grad():
gallery_features, gallery_labels = extract_features(
model, dataloaders["gallery"])
gallery_labels = np.array(gallery_labels)
dataset = image_datasets["query"]
queries = list(range(len(dataset)))
random.shuffle(queries)
def on_key(event):
"""If a left or right key was pressed, plots the next query in that direction."""
global curr_idx
if event.key == "left":
curr_idx = (curr_idx - 1) if curr_idx > 0 else len(queries) - 1
elif event.key == "right":
curr_idx = (curr_idx + 1) if curr_idx < len(queries) - 1 else 0
elif event.key == "enter":
fig.savefig("reid_query_result.pdf", pad_inches=0, bbox_inches='tight')
else:
return
refresh_plot()
def refresh_plot():
"""Computes the result of the current query and shows it on the canvas."""
if args.use_saved_mat:
q_feature = query_features[curr_idx]
y = query_labels[curr_idx]
else:
X, y = dataset[curr_idx]
with torch.no_grad():
q_feature = extract_feature(model, X).cpu()
if use_cam:
curr_cam = query_df["cam"].iloc[curr_idx]
good_gallery_idx = torch.tensor(gallery_df["cam"] != curr_cam).type(torch.bool)
gallery_orig_idx = np.where(good_gallery_idx)[0]
gal_features = gallery_features[good_gallery_idx]
else:
gallery_orig_idx = np.arange(len(gallery_df))
gal_features = gallery_features
gallery_scores = get_scores(q_feature, gal_features)
idx = np.argsort(gallery_scores)[::-1]
if use_cam:
g_labels = gallery_labels[gallery_orig_idx][idx]
else:
g_labels = gallery_labels[idx]
q_img = dataset.get_image(curr_idx)
g_imgs = [image_datasets["gallery"].get_image(gallery_orig_idx[i])
for i in idx[:args.num_images]]
show_query_result(axes, q_img, g_imgs, y, g_labels)
fig.canvas.draw()
fig.canvas.flush_events()
n_rows = math.ceil((1 + args.num_images) / args.imgs_per_row)
fig, axes = plt.subplots(n_rows, args.imgs_per_row, figsize=(12, 15))
fig.canvas.mpl_connect('key_press_event', on_key)
HELP_TXT="Press <left-arrow> and <right-arrow> to navigate queries. Press <enter> to save into current folder as pdf."
print(HELP_TXT)
curr_idx = 0
refresh_plot()
plt.show()