-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_features.py
121 lines (95 loc) · 3.6 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import print_function, division
import argparse
import math
import time
import os
import sys
import torch
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import transforms
import scipy.io
import pandas as pd
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(SCRIPT_DIR)
from load_model import load_model_from_opts
from dataset import ImageDataset
from tool.extract import extract_feature
torchvision_version = list(map(int, torchvision.__version__.split(".")[:2]))
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(description='Test')
parser.add_argument("--model_opts", required=True,
type=str, help="model saved options")
parser.add_argument("--checkpoint", required=True,
type=str, help="model checkpoint to load")
parser.add_argument("--csv_path", required=True,
type=str, help="csv to contain metadata for the images")
parser.add_argument("--data_dir", type=str, required=True,
help="root directory for image datasets")
parser.add_argument("--output_path", default="pytorch_result.mat",
help="file to write output features into.")
parser.add_argument('--gpu_ids', default='0', type=str,
help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--batchsize', default=32, type=int, help='batchsize')
parser.add_argument('--ms', default='1', type=str,
help='multiple_scale: e.g. 1 1,1.1 1,1.1,1.2')
parser.add_argument('--num_workers', default=0, type=int)
opt = parser.parse_args()
print('We use the scale: %s' % opt.ms)
str_ms = opt.ms.split(',')
ms = []
for s in str_ms:
s_f = float(s)
ms.append(math.sqrt(s_f))
use_gpu = torch.cuda.is_available()
if not use_gpu:
device = torch.device("cpu")
else:
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
gpu_ids.append(id)
# set gpu ids
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
cudnn.benchmark = True
device = torch.device("cuda")
######################################################################
# Load Data
# ---------
#
h, w = 224, 224
interpolation = 3 if torchvision_version[0] == 0 and torchvision_version[1] < 13 else \
transforms.InterpolationMode.BICUBIC
data_transforms = transforms.Compose([
transforms.Resize((h, w), interpolation=interpolation),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
df = pd.read_csv(opt.csv_path)
classes = list(df["id"].unique())
image_dataset = ImageDataset(opt.data_dir, df, "id", classes, transform=data_transforms)
dataloader = torch.utils.data.DataLoader(image_dataset, batch_size=opt.batchsize,
shuffle=False, num_workers=opt.num_workers)
######################################################################
# Load model
# ----------
print('------- Feature extraction -----------')
print("Running on: {}".format(device))
model = load_model_from_opts(opt.model_opts, ckpt=opt.checkpoint,
remove_classifier=True)
model.eval()
model.to(device)
# Extract features
since = time.time()
features, labels = extract_feature(model, dataloader, device, ms)
time_elapsed = time.time() - since
print('Complete in {:.0f}m {:.2f}s'.format(
time_elapsed // 60, time_elapsed % 60))
result = {'features': features.numpy(), 'labels': labels}
scipy.io.savemat(opt.output_path, result)
print("Feature extraction finished.")