-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_model.py
45 lines (33 loc) · 1.71 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from keras.models import Sequential
from keras.layers import BatchNormalization, Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.losses import categorical_crossentropy
from keras.optimizers import Adam
class CNNModel():
def __init__(self, input_shape, num_classes, learning_rate):
self.model = self.initialize_model(input_shape, num_classes, learning_rate)
def initialize_model(self, input_shape, num_classes, learning_rate):
# Define a CNN model
model = Sequential()
model.add(Conv2D(32, (5, 5), strides=(1, 1), activation="relu", input_shape=input_shape, padding="same"))
model.add(Conv2D(32, (5, 5), strides=(2, 2), activation="relu", padding="same"))
model.add(MaxPooling2D((2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Conv2D(64, (3, 3), strides=(1, 1), activation="relu", padding="same"))
model.add(Conv2D(64, (3, 3), strides=(1, 1), activation="relu", padding="same"))
model.add(MaxPooling2D((2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Conv2D(96, (3, 3), strides=(1, 1), activation="relu", padding="same"))
model.add(Conv2D(96, (3, 3), strides=(1, 1), activation="relu", padding="same"))
model.add(MaxPooling2D((2, 2)))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(num_classes, activation="softmax", kernel_regularizer="l2"))
model.compile(
optimizer=Adam(learning_rate),
loss=categorical_crossentropy,
metrics=["accuracy"])
return model