-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathtxt2img_demo.lua
106 lines (94 loc) · 3.22 KB
/
txt2img_demo.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
require 'image'
require 'nn'
require 'nngraph'
require 'cunn'
require 'cutorch'
require 'cudnn'
require 'lfs'
torch.setdefaulttensortype('torch.FloatTensor')
local alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{} "
local dict = {}
for i = 1,#alphabet do
dict[alphabet:sub(i,i)] = i
end
ivocab = {}
for k,v in pairs(dict) do
ivocab[v] = k
end
opt = {
filenames = '',
dataset = 'cub',
batchSize = 16, -- number of samples to produce
noisetype = 'normal', -- type of noise distribution (uniform / normal).
imsize = 1, -- used to produce larger images. 1 = 64px. 2 = 80px, 3 = 96px, ...
noisemode = 'random', -- random / line / linefull1d / linefull
gpu = 1, -- gpu mode. 0 = CPU, 1 = GPU
display = 0, -- Display image: 0 = false, 1 = true
nz = 100,
doc_length = 201,
queries = 'cub_queries.txt',
checkpoint_dir = '',
net_gen = '',
net_txt = '',
}
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
noise = torch.Tensor(opt.batchSize, opt.nz, opt.imsize, opt.imsize)
net_gen = torch.load(opt.checkpoint_dir .. '/' .. opt.net_gen)
net_txt = torch.load(opt.net_txt)
if net_txt.protos ~=nil then net_txt = net_txt.protos.enc_doc end
net_gen:evaluate()
net_txt:evaluate()
-- Extract all text features.
local fea_txt = {}
-- Decode text for sanity check.
local raw_txt = {}
local raw_img = {}
for query_str in io.lines(opt.queries) do
local txt = torch.zeros(1,opt.doc_length,#alphabet)
for t = 1,opt.doc_length do
local ch = query_str:sub(t,t)
local ix = dict[ch]
if ix ~= 0 and ix ~= nil then
txt[{1,t,ix}] = 1
end
end
raw_txt[#raw_txt+1] = query_str
txt = txt:cuda()
fea_txt[#fea_txt+1] = net_txt:forward(txt):clone()
end
if opt.gpu > 0 then
require 'cunn'
require 'cudnn'
net_gen:cuda()
net_txt:cuda()
noise = noise:cuda()
end
local html = '<html><body><h1>Generated Images</h1><table border="1px solid gray" style="width=100%"><tr><td><b>Caption</b></td><td><b>Image</b></td></tr>'
for i = 1,#fea_txt do
print(string.format('generating %d of %d', i, #fea_txt))
local cur_fea_txt = torch.repeatTensor(fea_txt[i], opt.batchSize, 1)
local cur_raw_txt = raw_txt[i]
if opt.noisetype == 'uniform' then
noise:uniform(-1, 1)
elseif opt.noisetype == 'normal' then
noise:normal(0, 1)
end
local images = net_gen:forward{noise, cur_fea_txt:cuda()}
local visdir = string.format('results/%s', opt.dataset)
lfs.mkdir('results')
lfs.mkdir(visdir)
local fname = string.format('%s/img_%d', visdir, i)
local fname_png = fname .. '.png'
local fname_txt = fname .. '.txt'
images:add(1):mul(0.5)
--image.save(fname_png, image.toDisplayTensor(images,4,torch.floor(opt.batchSize/4)))
image.save(fname_png, image.toDisplayTensor(images,4,opt.batchSize/2))
html = html .. string.format('\n<tr><td>%s</td><td><img src="%s"></td></tr>',
cur_raw_txt, fname_png)
os.execute(string.format('echo "%s" > %s', cur_raw_txt, fname_txt))
end
html = html .. '</html>'
fname_html = string.format('%s.html', opt.dataset)
os.execute(string.format('echo "%s" > %s', html, fname_html))