-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathmain_txt_coco.lua
229 lines (196 loc) · 6.8 KB
/
main_txt_coco.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
--[[
Train a text encoder.
--]]
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
opt = {
numCaption = 1,
encoder = 'rnn',
cnn_dim = 512,
save_every = 100,
print_every = 1,
dataset = 'coco',
img_dir = '',
filenames = '',
data_root = '/home/reedscot/data/cub_files6',
checkpoint_dir = '/home/reedscot/checkpoints',
batchSize = 64,
doc_length = 201,
loadSize = 76,
txtSize = 1024, -- # of dim for raw text.
fineSize = 64,
nThreads = 4, -- # of data loading threads to use
niter = 1000, -- # of iter at starting learning rate
lr = 0.0002, -- initial learning rate for adam
lr_decay = 0.5, -- initial learning rate for adam
decay_every = 100,
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
display = 1, -- display samples while training. 0 = false
display_id = 10, -- display window id.
gpu = 2, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = 'coco',
init_t = '',
use_cudnn = 0,
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
if opt.gpu > 0 then
ok, cunn = pcall(require, 'cunn')
ok2, cutorch = pcall(require, 'cutorch')
cutorch.setDevice(opt.gpu)
end
opt.manualSeed = torch.random(1, 10000) -- fix seed
print("Random Seed: " .. opt.manualSeed)
torch.manualSeed(opt.manualSeed)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
-- create data loader
local DataLoader = paths.dofile('data/data.lua')
local data = DataLoader.new(opt.nThreads, opt.dataset, opt)
print("Dataset: " .. opt.dataset, " Size: ", data:size())
----------------------------------------------------------------------------
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
FixedRNN = require('modules.FixedGRU')
DocumentCNN = require('modules.HybridCNNLong')
if opt.init_t == '' then
alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{} "
dict = {}
for i = 1,#alphabet do
dict[alphabet:sub(i,i)] = i
end
alphabet_size = #alphabet
netT = DocumentCNN.cnn(alphabet_size, opt.txtSize, 0, 1, opt.cnn_dim)
netT:apply(weights_init)
else
netT = torch.load(opt.init_t)
end
---------------------------------------------------------------------------
optimStateT = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
----------------------------------------------------------------------------
local input_txt_raw1 = torch.zeros(opt.batchSize, opt.doc_length, alphabet_size)
local input_txt_raw2 = torch.zeros(opt.batchSize, opt.doc_length, alphabet_size)
local input_txt_emb1 = torch.Tensor(opt.batchSize, opt.txtSize)
local input_txt_emb2 = torch.Tensor(opt.batchSize, opt.txtSize)
local errT
local epoch_tm = torch.Timer()
local tm = torch.Timer()
local data_tm = torch.Timer()
----------------------------------------------------------------------------
if opt.gpu > 0 then
input_txt_emb1 = input_txt_emb1:cuda()
input_txt_emb2 = input_txt_emb2:cuda()
input_txt_raw1 = input_txt_raw1:cuda()
input_txt_raw2 = input_txt_raw2:cuda()
netT:cuda()
end
if opt.use_cudnn == 1 then
cudnn = require('cudnn')
netT = cudnn.convert(netT, cudnn)
end
local parametersT, gradParametersT = netT:getParameters()
if opt.display then disp = require 'display' end
local sample = function()
data_tm:reset(); data_tm:resume()
real_img, wrong_img, real_txt, match_txt = data:getBatch()
data_tm:stop()
input_txt_raw1:copy(real_txt)
input_txt_raw2:copy(match_txt)
end
acc_batch = 0.0
acc_smooth = 0.0
function JointEmbeddingLoss(fea_txt1, fea_txt2)
local batch_size = fea_txt1:size(1)
local score = torch.zeros(batch_size, batch_size)
local txt1_grads = fea_txt1:clone():fill(0)
local txt2_grads = fea_txt2:clone():fill(0)
local loss = 0
acc_batch = 0.0
for i = 1,batch_size do
for j = 1,batch_size do
score[{i,j}] = torch.dot(fea_txt2:narrow(1,i,1), fea_txt1:narrow(1,j,1))
end
local label_score = score[{i,i}]
for j = 1,batch_size do
if (i ~= j) then
local cur_score = score[{i,j}]
local thresh = cur_score - label_score + 1
if (thresh > 0) then
loss = loss + thresh
local txt_diff = fea_txt1:narrow(1,j,1) - fea_txt1:narrow(1,i,1)
txt2_grads:narrow(1, i, 1):add(txt_diff)
txt1_grads:narrow(1, j, 1):add(fea_txt2:narrow(1,i,1))
txt1_grads:narrow(1, i, 1):add(-fea_txt2:narrow(1,i,1))
end
end
end
local max_score, max_ix = score:narrow(1,i,1):max(2)
if (max_ix[{1,1}] == i) then
acc_batch = acc_batch + 1
end
end
acc_batch = 100 * (acc_batch / batch_size)
local denom = batch_size * batch_size
local res = { [1] = txt1_grads:div(denom),
[2] = txt2_grads:div(denom) }
acc_smooth = 0.99 * acc_smooth + 0.01 * acc_batch
return loss / denom, res
end
local fTx = function(x)
gradParametersT:zero()
-- real txt
input_txt_emb1:copy(netT:forward(input_txt_raw1))
-- get matching text embeddings
input_txt_emb2:copy(netT:forward(input_txt_raw2))
errT, grads = JointEmbeddingLoss(input_txt_emb1, input_txt_emb2)
netT:backward(input_txt_raw2, grads[2])
netT:forward(input_txt_raw1)
netT:backward(input_txt_raw1, grads[1])
return errT, gradParametersT
end
-- train
for epoch = 1, opt.niter do
epoch_tm:reset()
if epoch % opt.decay_every == 0 then
optimStateT.learningRate = optimStateT.learningRate * opt.lr_decay
end
for i = 1, math.min(data:size(), opt.ntrain), opt.batchSize do
tm:reset()
sample()
optim.adam(fTx, parametersT, optimStateT)
-- logging
if ((i-1) / opt.batchSize) % opt.print_every == 0 then
print(('[%d][%d/%d] T:%.3f DT:%.3f lr: %.4g '
.. ' T:%.3f, acc:(%.3f,%.3f)'):format(
epoch, ((i-1) / opt.batchSize),
math.floor(math.min(data:size(), opt.ntrain) / opt.batchSize),
tm:time().real, data_tm:time().real,
optimStateT.learningRate,
errT and errT or -1,
acc_batch, acc_smooth))
end
end
if epoch % opt.save_every == 0 then
paths.mkdir(opt.checkpoint_dir)
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_net_T.t7', netT)
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_opt.t7', opt)
print(('End of epoch %d / %d \t Time Taken: %.3f'):format(
epoch, opt.niter, epoch_tm:time().real))
end
end