-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathmain_cls_int.lua
458 lines (405 loc) · 16 KB
/
main_cls_int.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
--[[
Generic training script for GAN, GAN-CLS, GAN-INT, GAN-CLS-INT.
--]]
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
opt = {
numCaption = 4,
replicate = 1, -- if 1, then replicate averaged text features numCaption times.
save_every = 100,
print_every = 1,
dataset = 'cub_fast', -- imagenet / lsun / folder
no_aug = 0,
img_dir = '',
keep_img_frac = 1.0,
interp_weight = 0,
interp_type = 1,
cls_weight = 0,
filenames = '',
data_root = '/home/reedscot/data/cub_files6',
classnames = '/home/reedscot/data/cub/allclasses.txt',
trainids = '/home/reedscot/data/cub/allids.txt',
checkpoint_dir = '/home/reedscot/checkpoints',
numshot = 0,
batchSize = 64,
doc_length = 201,
loadSize = 76,
txtSize = 1024, -- # of dim for raw text.
fineSize = 64,
nt = 128, -- # of dim for text features.
nz = 100, -- # of dim for Z
ngf = 128, -- # of gen filters in first conv layer
ndf = 64, -- # of discrim filters in first conv layer
nThreads = 4, -- # of data loading threads to use
niter = 1000, -- # of iter at starting learning rate
lr = 0.0002, -- initial learning rate for adam
lr_decay = 0.5, -- initial learning rate for adam
decay_every = 100,
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
display = 1, -- display samples while training. 0 = false
display_id = 10, -- display window id.
gpu = 2, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = 'experiment_long',
noise = 'normal', -- uniform / normal
init_g = '',
init_d = '',
use_cudnn = 0,
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
if opt.gpu > 0 then
ok, cunn = pcall(require, 'cunn')
ok2, cutorch = pcall(require, 'cutorch')
cutorch.setDevice(opt.gpu)
end
opt.manualSeed = torch.random(1, 10000) -- fix seed
print("Random Seed: " .. opt.manualSeed)
torch.manualSeed(opt.manualSeed)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
-- create data loader
local DataLoader = paths.dofile('data/data.lua')
local data = DataLoader.new(opt.nThreads, opt.dataset, opt)
print("Dataset: " .. opt.dataset, " Size: ", data:size())
----------------------------------------------------------------------------
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
local nc = 3
local nz = opt.nz
local ndf = opt.ndf
local ngf = opt.ngf
local real_label = 1
local fake_label = 0
local SpatialBatchNormalization = nn.SpatialBatchNormalization
local SpatialConvolution = nn.SpatialConvolution
local SpatialFullConvolution = nn.SpatialFullConvolution
if opt.init_g == '' then
fcG = nn.Sequential()
fcG:add(nn.Linear(opt.txtSize,opt.nt))
fcG:add(nn.LeakyReLU(0.2,true))
netG = nn.Sequential()
-- concat Z and txt
ptg = nn.ParallelTable()
ptg:add(nn.Identity())
ptg:add(fcG)
netG:add(ptg)
netG:add(nn.JoinTable(2))
-- input is Z, going into a convolution
netG:add(SpatialFullConvolution(nz + opt.nt, ngf * 8, 4, 4))
netG:add(SpatialBatchNormalization(ngf * 8))
-- state size: (ngf*8) x 4 x 4
local conc = nn.ConcatTable()
local conv = nn.Sequential()
conv:add(SpatialConvolution(ngf * 8, ngf * 2, 1, 1, 1, 1, 0, 0))
conv:add(SpatialBatchNormalization(ngf * 2)):add(nn.ReLU(true))
conv:add(SpatialConvolution(ngf * 2, ngf * 2, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ngf * 2))
conv:add(nn.ReLU(true))
conv:add(SpatialConvolution(ngf * 2, ngf * 8, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ngf * 8))
conc:add(nn.Identity())
conc:add(conv)
netG:add(conc)
netG:add(nn.CAddTable())
netG:add(nn.ReLU(true))
-- state size: (ngf*8) x 4 x 4
netG:add(SpatialFullConvolution(ngf * 8, ngf * 4, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 4))
-- state size: (ngf*4) x 8 x 8
local conc = nn.ConcatTable()
local conv = nn.Sequential()
conv:add(SpatialConvolution(ngf * 4, ngf, 1, 1, 1, 1, 0, 0))
conv:add(SpatialBatchNormalization(ngf)):add(nn.ReLU(true))
conv:add(SpatialConvolution(ngf, ngf, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ngf))
conv:add(nn.ReLU(true))
conv:add(SpatialConvolution(ngf, ngf * 4, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ngf * 4))
conc:add(nn.Identity())
conc:add(conv)
netG:add(conc)
netG:add(nn.CAddTable())
netG:add(nn.ReLU(true))
-- state size: (ngf*4) x 8 x 8
netG:add(SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 2)):add(nn.ReLU(true))
-- state size: (ngf*2) x 16 x 16
netG:add(SpatialFullConvolution(ngf * 2, ngf, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf)):add(nn.ReLU(true))
-- state size: (ngf) x 32 x 32
netG:add(SpatialFullConvolution(ngf, nc, 4, 4, 2, 2, 1, 1))
netG:add(nn.Tanh())
-- state size: (nc) x 64 x 64
netG:apply(weights_init)
else
netG = torch.load(opt.init_g)
end
if opt.init_d == '' then
convD = nn.Sequential()
-- input is (nc) x 64 x 64
convD:add(SpatialConvolution(nc, ndf, 4, 4, 2, 2, 1, 1))
convD:add(nn.LeakyReLU(0.2, true))
-- state size: (ndf) x 32 x 32
convD:add(SpatialConvolution(ndf, ndf * 2, 4, 4, 2, 2, 1, 1))
convD:add(SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*2) x 16 x 16
convD:add(SpatialConvolution(ndf * 2, ndf * 4, 4, 4, 2, 2, 1, 1))
convD:add(SpatialBatchNormalization(ndf * 4))
-- state size: (ndf*4) x 8 x 8
convD:add(SpatialConvolution(ndf * 4, ndf * 8, 4, 4, 2, 2, 1, 1))
convD:add(SpatialBatchNormalization(ndf * 8))
-- state size: (ndf*8) x 4 x 4
local conc = nn.ConcatTable()
local conv = nn.Sequential()
conv:add(SpatialConvolution(ndf * 8, ndf * 2, 1, 1, 1, 1, 0, 0))
conv:add(SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
conv:add(SpatialConvolution(ndf * 2, ndf * 2, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ndf * 2))
conv:add(nn.LeakyReLU(0.2, true))
conv:add(SpatialConvolution(ndf * 2, ndf * 8, 3, 3, 1, 1, 1, 1))
conv:add(SpatialBatchNormalization(ndf * 8))
conc:add(nn.Identity())
conc:add(conv)
convD:add(conc)
convD:add(nn.CAddTable())
convD:add(nn.LeakyReLU(0.2, true))
local fcD = nn.Sequential()
fcD:add(nn.Linear(opt.txtSize,opt.nt))
fcD:add(nn.BatchNormalization(opt.nt))
fcD:add(nn.LeakyReLU(0.2,true))
fcD:add(nn.Replicate(4,3))
fcD:add(nn.Replicate(4,4))
netD = nn.Sequential()
pt = nn.ParallelTable()
pt:add(convD)
pt:add(fcD)
netD:add(pt)
netD:add(nn.JoinTable(2))
-- state size: (ndf*8 + 128) x 4 x 4
netD:add(SpatialConvolution(ndf * 8 + opt.nt, ndf * 8, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 8)):add(nn.LeakyReLU(0.2, true))
netD:add(SpatialConvolution(ndf * 8, 1, 4, 4))
netD:add(nn.Sigmoid())
-- state size: 1 x 1 x 1
netD:add(nn.View(1):setNumInputDims(3))
-- state size: 1
netD:apply(weights_init)
else
netD = torch.load(opt.init_d)
end
assert(math.floor(opt.batchSize / opt.numCaption) * opt.numCaption == opt.batchSize)
netR = nn.Sequential()
if opt.replicate == 1 then
netR:add(nn.Reshape(opt.batchSize / opt.numCaption, opt.numCaption, opt.txtSize))
netR:add(nn.Transpose({1,2}))
netR:add(nn.Mean(1))
netR:add(nn.Replicate(opt.numCaption))
netR:add(nn.Transpose({1,2}))
netR:add(nn.Reshape(opt.batchSize, opt.txtSize))
else
netR:add(nn.Reshape(opt.batchSize, opt.numCaption, opt.txtSize))
netR:add(nn.Transpose({1,2}))
netR:add(nn.Mean(1))
end
local criterion = nn.BCECriterion()
local weights = torch.zeros(opt.batchSize * 3/2)
weights:narrow(1,1,opt.batchSize):fill(1)
weights:narrow(1,opt.batchSize+1,opt.batchSize/2):fill(opt.interp_weight)
local criterion_interp = nn.BCECriterion(weights)
---------------------------------------------------------------------------
optimStateG = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
optimStateD = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
----------------------------------------------------------------------------
local alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{} "
alphabet_size = #alphabet
local input_img = torch.Tensor(opt.batchSize, 3, opt.fineSize, opt.fineSize)
local input_img_interp = torch.Tensor(opt.batchSize * 3/2, 3, opt.fineSize, opt.fineSize)
if opt.replicate == 1 then
input_txt_raw = torch.Tensor(opt.batchSize, opt.txtSize)
else
input_txt_raw = torch.Tensor(opt.batchSize * opt.numCaption, opt.txtSize)
end
local input_txt = torch.Tensor(opt.batchSize, opt.txtSize)
local input_txt_interp = torch.zeros(opt.batchSize * 3/2, opt.txtSize)
local noise = torch.Tensor(opt.batchSize, nz, 1, 1)
local noise_interp = torch.Tensor(opt.batchSize * 3/2, nz, 1, 1)
local label = torch.Tensor(opt.batchSize)
local label_interp = torch.Tensor(opt.batchSize * 3/2)
local errD, errG, errW
local epoch_tm = torch.Timer()
local tm = torch.Timer()
local data_tm = torch.Timer()
----------------------------------------------------------------------------
if opt.gpu > 0 then
input_img = input_img:cuda()
input_img_interp = input_img_interp:cuda()
input_txt = input_txt:cuda()
input_txt_raw = input_txt_raw:cuda()
input_txt_interp = input_txt_interp:cuda()
noise = noise:cuda()
noise_interp = noise_interp:cuda()
label = label:cuda()
label_interp = label_interp:cuda()
netD:cuda()
netG:cuda()
netR:cuda()
criterion:cuda()
criterion_interp:cuda()
end
if opt.use_cudnn == 1 then
cudnn = require('cudnn')
netD = cudnn.convert(netD, cudnn)
netG = cudnn.convert(netG, cudnn)
netR = cudnn.convert(netR, cudnn)
end
local parametersD, gradParametersD = netD:getParameters()
local parametersG, gradParametersG = netG:getParameters()
if opt.display then disp = require 'display' end
-- create closure to evaluate f(X) and df/dX of discriminator
local fDx = function(x)
netD:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
netG:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
gradParametersD:zero()
-- train with real
data_tm:reset(); data_tm:resume()
real_img, real_txt, wrong_img, _ = data:getBatch()
data_tm:stop()
input_img:copy(real_img)
input_txt_raw:copy(real_txt)
-- average adjacent text features in batch dimension.
emb_txt = netR:forward(input_txt_raw)
input_txt:copy(emb_txt)
if opt.interp_type == 1 then
-- compute (a + b)/2
input_txt_interp:narrow(1,1,opt.batchSize):copy(input_txt)
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):copy(input_txt:narrow(1,1,opt.batchSize/2))
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):add(input_txt:narrow(1,opt.batchSize/2+1,opt.batchSize/2))
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):mul(0.5)
elseif opt.interp_type == 2 then
-- compute (a + b)/2
input_txt_interp:narrow(1,1,opt.batchSize):copy(input_txt)
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):copy(input_txt:narrow(1,1,opt.batchSize/2))
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):add(input_txt:narrow(1,opt.batchSize/2+1,opt.batchSize/2))
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):mul(0.5)
-- add extrapolation vector.
local alpha = torch.rand(opt.batchSize/2,1):mul(2):add(-1) -- alpha ~ uniform(-1,1)
if opt.gpu >=0 then
alpha = alpha:float():cuda()
end
alpha = torch.expand(alpha,opt.batchSize/2,input_txt_interp:size(2))
local vec = (input_txt:narrow(1,opt.batchSize/2+1,opt.batchSize/2) -
input_txt:narrow(1,1,opt.batchSize/2)):cmul(alpha)
input_txt_interp:narrow(1,opt.batchSize+1,opt.batchSize/2):add(vec)
end
label:fill(real_label)
local output = netD:forward{input_img, input_txt}
local errD_real = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netD:backward({input_img, input_txt}, df_do)
errD_wrong = 0
if opt.cls_weight > 0 then
-- train with wrong
input_img:copy(wrong_img)
label:fill(fake_label)
local output = netD:forward{input_img, input_txt}
errD_wrong = opt.cls_weight*criterion:forward(output, label)
local df_do = criterion:backward(output, label)
df_do:mul(opt.cls_weight)
netD:backward({input_img, input_txt}, df_do)
end
-- train with fake
if opt.noise == 'uniform' then -- regenerate random noise
noise:uniform(-1, 1)
elseif opt.noise == 'normal' then
noise:normal(0, 1)
end
local fake = netG:forward{noise, input_txt}
input_img:copy(fake)
label:fill(fake_label)
local output = netD:forward{input_img, input_txt}
local errD_fake = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
local fake_weight = 1 - opt.cls_weight
errD_fake = errD_fake*fake_weight
df_do:mul(fake_weight)
netD:backward({input_img, input_txt}, df_do)
errD = errD_real + errD_fake + errD_wrong
errW = errD_wrong
return errD, gradParametersD
end
-- create closure to evaluate f(X) and df/dX of generator
local fGx = function(x)
netD:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
netG:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
gradParametersG:zero()
if opt.noise == 'uniform' then -- regenerate random noise
noise_interp:uniform(-1, 1)
elseif opt.noise == 'normal' then
noise_interp:normal(0, 1)
end
local fake = netG:forward{noise_interp, input_txt_interp}
input_img_interp:copy(fake)
label_interp:fill(real_label) -- fake labels are real for generator cost
local output = netD:forward{input_img_interp, input_txt_interp}
errG = criterion_interp:forward(output, label_interp)
local df_do = criterion_interp:backward(output, label_interp)
local df_dg = netD:updateGradInput({input_img_interp, input_txt_interp}, df_do)
netG:backward({noise_interp, input_txt_interp}, df_dg[1])
return errG, gradParametersG
end
-- train
for epoch = 1, opt.niter do
epoch_tm:reset()
if epoch % opt.decay_every == 0 then
optimStateG.learningRate = optimStateG.learningRate * opt.lr_decay
optimStateD.learningRate = optimStateD.learningRate * opt.lr_decay
end
for i = 1, math.min(data:size(), opt.ntrain), opt.batchSize do
tm:reset()
-- (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
optim.adam(fDx, parametersD, optimStateD)
-- (2) Update G network: maximize log(D(G(z)))
optim.adam(fGx, parametersG, optimStateG)
-- logging
if ((i-1) / opt.batchSize) % opt.print_every == 0 then
print(('[%d][%d/%d] T:%.3f DT:%.3f lr: %.4g '
.. ' Err_G: %.4f Err_D: %.4f Err_W: %.4f'):format(
epoch, ((i-1) / opt.batchSize),
math.floor(math.min(data:size(), opt.ntrain) / opt.batchSize),
tm:time().real, data_tm:time().real,
optimStateG.learningRate,
errG and errG or -1, errD and errD or -1,
errW and errW or -1))
local fake = netG.output
disp.image(fake:narrow(1,1,opt.batchSize), {win=opt.display_id, title=opt.name})
disp.image(real_img, {win=opt.display_id * 3, title=opt.name})
end
end
if epoch % opt.save_every == 0 then
paths.mkdir(opt.checkpoint_dir)
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_net_G.t7', netG)
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_net_D.t7', netD)
torch.save(opt.checkpoint_dir .. '/' .. opt.name .. '_' .. epoch .. '_opt.t7', opt)
print(('End of epoch %d / %d \t Time Taken: %.3f'):format(
epoch, opt.niter, epoch_tm:time().real))
end
end