forked from 0xPARC/plonkathon
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathverifier.py
420 lines (379 loc) · 15.9 KB
/
verifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import py_ecc.bn128 as b
from utils import *
from dataclasses import dataclass
from curve import *
from transcript import Transcript
from poly import Polynomial, Basis
@dataclass
class VerificationKey:
"""Verification key"""
# we set this to some power of 2 (so that we can FFT over it), that is at least the number of constraints we have (so we can Lagrange interpolate them)
group_order: int
# [q_M(x)]₁ (commitment to multiplication selector polynomial)
Qm: G1Point
# [q_L(x)]₁ (commitment to left selector polynomial)
Ql: G1Point
# [q_R(x)]₁ (commitment to right selector polynomial)
Qr: G1Point
# [q_O(x)]₁ (commitment to output selector polynomial)
Qo: G1Point
# [q_C(x)]₁ (commitment to constants selector polynomial)
Qc: G1Point
# [S_σ1(x)]₁ (commitment to the first permutation polynomial S_σ1(X))
S1: G1Point
# [S_σ2(x)]₁ (commitment to the second permutation polynomial S_σ2(X))
S2: G1Point
# [S_σ3(x)]₁ (commitment to the third permutation polynomial S_σ3(X))
S3: G1Point
# [x]₂ = xH, where H is a generator of G_2
X_2: G2Point
# nth root of unity (i.e. ω^1), where n is the program's group order.
w: Scalar
# More optimized version that tries hard to minimize pairings and
# elliptic curve multiplications, but at the cost of being harder
# to understand and mixing together a lot of the computations to
# efficiently batch them
def verify_proof(self, group_order: int, pf, public=[]) -> bool:
# 4. Compute challenges
beta, gamma, alpha, zeta, v, u = self.compute_challenges(pf)
proof = pf.flatten()
# 5. Compute zero polynomial evaluation Z_H(ζ) = ζ^n - 1
ZH_eval = zeta ** group_order - 1
# 6. Compute Lagrange polynomial evaluation L_0(ζ)
L0 = Polynomial([Scalar(1)] + [Scalar(0)] * (group_order - 1), Basis.LAGRANGE)
L0_eval = L0.barycentric_eval(zeta)
# 7. Compute public input polynomial evaluation PI(ζ).
PI = Polynomial(
[Scalar(-v) for v in public]
+ [Scalar(0) for _ in range(self.group_order - len(public))],
Basis.LAGRANGE,
)
PI_eval = PI.barycentric_eval(zeta)
# Compute the constant term of R. This is not literally the degree-0
# term of the R polynomial; rather, it's the portion of R that can
# be computed directly, without resorting to elliptic cutve commitments
# R_pt = ec_lincomb(
# [
# # gate_constraint_point
# (self.Ql, proof["a_eval"]),
# (self.Qr, proof["b_eval"]),
# (self.Qm, proof["a_eval"] * proof["b_eval"]),
# (self.Qo, proof["c_eval"]),
# (b.G1, PI_eval), # 常数项
# (self.Qc, 1),
#
# # permutation_constraint_point
# (
# proof["z_1"], (
# (proof["a_eval"] + beta * zeta + gamma)
# * (proof["b_eval"] + beta * 2 * zeta + gamma)
# * (proof["c_eval"] + beta * 3 * zeta + gamma)
# * alpha
# )
# ),
# (
# self.S3, -(
# (proof["a_eval"] + beta * proof["s1_eval"] + gamma)
# * (proof["b_eval"] + beta * proof["s2_eval"] + gamma)
# * beta
# * proof["z_shifted_eval"]
# * alpha
# )
# ),
# (
# b.G1, -(
# (proof["a_eval"] + beta * proof["s1_eval"] + gamma)
# * (proof["b_eval"] + beta * proof["s2_eval"] + gamma)
# * (proof["c_eval"] + gamma)
# * proof["z_shifted_eval"]
# * alpha
# ) #常数项
# ),
#
# # permutation_first_row point
# (proof["z_1"], L0_eval * alpha **2),
# (b.G1, -L0_eval * alpha **2), #常数项
#
# # t1/t2/t3
# (proof["t_lo_1"], -ZH_eval),
# (proof["t_mid_1"], -ZH_eval*zeta**group_order),
# (proof["t_hi_1"], -ZH_eval*zeta**(group_order*2))
# ]
# )
# Step8, 分离常数项。常数项为未优化版本中形如(G1, 系数的项)。
r0 = (
PI_eval
- L0_eval * alpha **2
- (
(proof["a_eval"] + beta * proof["s1_eval"] + gamma)
* (proof["b_eval"] + beta * proof["s2_eval"] + gamma)
* (proof["c_eval"] + gamma)
* proof["z_shifted_eval"]
* alpha
)
)
# Compute D = (R - r0) + u * Z, and E and F
#Step9,D_point 为未优化版本的R_pt 减去常数项的部分
D_pt = ec_lincomb(
[
# gate_constraint_point
(self.Ql, proof["a_eval"]),
(self.Qr, proof["b_eval"]),
(self.Qm, proof["a_eval"] * proof["b_eval"]),
(self.Qo, proof["c_eval"]),
# (b.G1, PI_eval), # 常数项
(self.Qc, 1),
# permutation_constraint_point
(
proof["z_1"], (
(proof["a_eval"] + beta * zeta + gamma)
* (proof["b_eval"] + beta * 2 * zeta + gamma)
* (proof["c_eval"] + beta * 3 * zeta + gamma)
* alpha
+ u
)
),
(
self.S3, -(
(proof["a_eval"] + beta * proof["s1_eval"] + gamma)
* (proof["b_eval"] + beta * proof["s2_eval"] + gamma)
* beta
* proof["z_shifted_eval"]
* alpha
)
),
# (
# b.G1, -(
# (proof["a_eval"] + beta * proof["s1_eval"] + gamma)
# * (proof["b_eval"] + beta * proof["s2_eval"] + gamma)
# * (proof["c_eval"] + gamma)
# * proof["z_shifted_eval"]
# * alpha
# )
# ), #常数项
# permutation_first_row point
(proof["z_1"], L0_eval * alpha **2),
#(b.G1, -L0_eval * alpha **2), #常数项
# t1/t2/t3
(proof["t_lo_1"], -ZH_eval),
(proof["t_mid_1"], -ZH_eval*zeta**group_order),
(proof["t_hi_1"], -ZH_eval*zeta**(group_order*2))
]
)
#Step10, 计算F_pt
F_pt = ec_lincomb(
[
(D_pt, 1),
(proof["a_1"],v),
(proof["b_1"], v**2),
(proof["c_1"], v**3),
(self.S1, v**4),
(self.S2, v ** 5),
]
)
#step11, 计算E_pt
E_coeff = (-r0
+ v * proof["a_eval"]
+ v**2 * proof["b_eval"]
+ v**3 * proof["c_eval"]
+ v**4 * proof["s1_eval"]
+ v**5 * proof["s2_eval"]
+ u *proof["z_shifted_eval"]
)
E_pt = ec_lincomb([(b.G1, E_coeff)])
# Run one pairing check to verify the last two checks.
# What's going on here is a clever re-arrangement of terms to check
# the same equations that are being checked in the basic version,
# but in a way that minimizes the number of EC muls and even
# compressed the two pairings into one. The 2 pairings -> 1 pairing
# trick is basically to replace checking
#
# Y1 = A * (X - a) and Y2 = B * (X - b)
#
# with
#
# Y1 + A * a = A * X
# Y2 + B * b = B * X
#
# so at this point we can take a random linear combination of the two
# checks, and verify it with only one pairing.
root_of_unity = Scalar.root_of_unity(group_order)
assert b.pairing(
self.X_2, ec_lincomb([(proof["W_z_1"], 1), (proof["W_zw_1"], u)])
) == b.pairing(
b.G2,
ec_lincomb(
[
(proof["W_z_1"], zeta),
(proof["W_zw_1"], u * zeta * root_of_unity),
(F_pt,1),
(E_pt,-1)
]
)
)
return True
# Basic, easier-to-understand version of what's going on
def verify_proof_unoptimized(self, group_order: int, pf, public=[]) -> bool:
# 4. Compute challenges
beta, gamma, alpha, zeta, v, u = self.compute_challenges(pf)
proof = pf.flatten()
# 5. Compute zero polynomial evaluation Z_H(ζ) = ζ^n - 1
ZH_eval = zeta ** group_order - 1
# 6. Compute Lagrange polynomial evaluation L_0(ζ)
L0 = Polynomial([Scalar(1)] + [Scalar(0)] * (group_order - 1), Basis.LAGRANGE)
L0_eval = L0.barycentric_eval(zeta)
# 7. Compute public input polynomial evaluation PI(ζ).
PI = Polynomial(
[Scalar(-v) for v in public]
+ [Scalar(0) for _ in range(self.group_order - len(public))],
Basis.LAGRANGE,
)
PI_eval = PI.barycentric_eval(zeta)
# Recover the commitment to the linearization polynomial R,
# exactly the same as what was created by the prover
# gate_contraints = (self.A * self.pk.QL
# + self.B * self.pk.QR
# + self.A * self.B * self.pk.QM
# + self.C * self.pk.QO
# + self.PI
# + self.pk.QC)
gate_constraint_point = ec_lincomb(
[
(self.Ql, proof["a_eval"]),
(self.Qr, proof["b_eval"]),
(self.Qm, proof["a_eval"] * proof["b_eval"]),
(self.Qo, proof["c_eval"]),
(b.G1, PI_eval),
(self.Qc, 1),
]
)
#self.rlc(val1, val2)= val_1 + self.beta * val_2 + gamma
# self.rlc(c_eval, S3_big) = c_eval + self.beta * S3_big + gamma 注意这里的S3_big是一个G1Point, 而(c_eval + gamma)是一个Scalar
# permutation_constraint = (
# Z_big
# * (
# self.rlc(self.a_eval, zeta)
# * self.rlc(self.b_eval, 2 * zeta)
# * self.rlc(self.c_eval, 3 * zeta)
# )
# - (
# self.rlc(c_eval, S3_big)
# * self.rlc(self.a_eval, self.s1_eval)
# * self.rlc(self.b_eval, self.s2_eval)
# )
# * self.z_shifted_eval
# )
permutation_constraint_point = ec_lincomb(
[
(
proof["z_1"], (
(proof["a_eval"] + beta * zeta + gamma)
* (proof["b_eval"] +beta * 2 * zeta + gamma)
* (proof["c_eval"] + beta * 3 * zeta + gamma)
)
),
(
self.S3, -(
(proof["a_eval"] + beta * proof["s1_eval"] + gamma)
* (proof["b_eval"] + beta * proof["s2_eval"] +gamma)
* beta
* proof["z_shifted_eval"]
)
),
(
b.G1, -(
(proof["a_eval"] + beta * proof["s1_eval"] + gamma)
* (proof["b_eval"] + beta * proof["s2_eval"] + gamma)
* (proof["c_eval"] + gamma)
* proof["z_shifted_eval"]
)
),
]
)
# permutation_first_row = (Z_big - Scalar(1)) * L0_eval = Z_big * L0_eval - Scalar(1) * L0_eval
permutation_first_row_point = ec_lincomb(
[
(proof["z_1"], L0_eval),
(b.G1, -L0_eval),
]
)
# R_big = (
# gate_constraints
# + permutation_constraint * alpha
# + permutation_first_row * (alpha ** 2)
# - (
# T1_big
# + T2_big * zeta ** group_order
# + T3_big * zeta ** (group_order * 2)
# ) * ZH_eval
# )
R_pt = ec_lincomb(
[
(gate_constraint_point,1),
(permutation_constraint_point, alpha),
(permutation_first_row_point, alpha**2),
(proof["t_lo_1"], -ZH_eval),
(proof["t_mid_1"], -ZH_eval*zeta**group_order),
(proof["t_hi_1"], -ZH_eval*zeta**(group_order*2))
]
)
print("verifier R_pt", R_pt)
# Verify that R(z) = 0 and the prover-provided evaluations
# A(z), B(z), C(z), S1(z), S2(z) are all correct
# In the COSET EXTENDED LAGRANGE BASIS,
# Construct W_Z = (
# R
# + v * (A - a_eval)
# + v**2 * (B - b_eval)
# + v**3 * (C - c_eval)
# + v**4 * (S1 - s1_eval)
# + v**5 * (S2 - s2_eval)
# ) / (X - zeta)
# 验证折叠之后的多项式k(x)
K_pt = ec_lincomb(
[
(R_pt,1),
(proof["a_1"],v),
(b.G1,- v * proof["a_eval"]),
(proof["b_1"],v**2),
(b.G1,- v**2 * proof["b_eval"]),
(proof["c_1"],v**3),
(b.G1,- v**3 * proof["c_eval"]),
(self.S1,v**4), # 此处不能用proof["s1_eval"]
(b.G1,- v**4 * proof["s1_eval"]),
(self.S2,v**5), # 此处不能用proof["s2_eval"]
(b.G1,- v**5 * proof["s2_eval"])
]
)
# k(x) = q(x)(x-z), 需要证明 e([k(x)], [1]) = e([q(x)],[(x-zeta)]) => e([k(x)], [1]) = e([q(x)],[x]-[zeta])
assert b.pairing(b.G2, K_pt) == b.pairing(b.add(self.X_2, ec_mul(b.G2, -zeta)), proof["W_z_1"])
print("done check 1");
# Verify that the provided value of Z(zeta*w) is correct
# ZW_big = (Z_big - self.z_shifted_eval) / (
# quarter_roots * self.fft_cofactor - root_of_unity * zeta
#)
# e([Z_big]-[self.z_shited_eval], [1]) = e([ZW_big], [x- root_of_unity * zeta])
root_of_unity = Scalar.root_of_unity(group_order)
assert b.pairing(
b.G2, ec_lincomb([(proof["z_1"], 1), (b.G1, -proof["z_shifted_eval"])])
) == b.pairing(
b.add(self.X_2, ec_mul(b.G2, -zeta * root_of_unity)), proof["W_zw_1"]
)
assert b.pairing(
b.G2, ec_lincomb([(proof["z_1"], 1), (b.G1, -proof["z_shifted_eval"])])
) == b.pairing(
b.add(self.X_2, ec_lincomb([(b.G2, -zeta * root_of_unity)])), proof["W_zw_1"]
)
print("done check 2")
return True
# Compute challenges (should be same as those computed by prover)
def compute_challenges(
self, proof
) -> tuple[Scalar, Scalar, Scalar, Scalar, Scalar, Scalar]:
transcript = Transcript(b"plonk")
beta, gamma = transcript.round_1(proof.msg_1) # beta, gamma 置换约束中的参数
alpha, _fft_cofactor = transcript.round_2(proof.msg_2) #将门约束和置换约束
zeta = transcript.round_3(proof.msg_3)
v = transcript.round_4(proof.msg_4)
u = transcript.round_5(proof.msg_5)
return beta, gamma, alpha, zeta, v, u