-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathmesh_prepare.py
434 lines (382 loc) · 17.1 KB
/
mesh_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import numpy as np
import os
import ntpath
def fill_mesh(mesh2fill, file: str, opt):
load_path = get_mesh_path(file, opt.num_aug)
if os.path.exists(load_path):
mesh_data = np.load(load_path, encoding='latin1', allow_pickle=True)
else:
mesh_data = from_scratch(file, opt)
np.savez_compressed(load_path, gemm_edges=mesh_data.gemm_edges, vs=mesh_data.vs, edges=mesh_data.edges,
edges_count=mesh_data.edges_count, ve=mesh_data.ve, v_mask=mesh_data.v_mask,
filename=mesh_data.filename, sides=mesh_data.sides,
edge_lengths=mesh_data.edge_lengths, edge_areas=mesh_data.edge_areas,
features=mesh_data.features)
mesh2fill.vs = mesh_data['vs']
mesh2fill.edges = mesh_data['edges']
mesh2fill.gemm_edges = mesh_data['gemm_edges']
mesh2fill.edges_count = int(mesh_data['edges_count'])
mesh2fill.ve = mesh_data['ve']
mesh2fill.v_mask = mesh_data['v_mask']
mesh2fill.filename = str(mesh_data['filename'])
mesh2fill.edge_lengths = mesh_data['edge_lengths']
mesh2fill.edge_areas = mesh_data['edge_areas']
mesh2fill.features = mesh_data['features']
mesh2fill.sides = mesh_data['sides']
def get_mesh_path(file: str, num_aug: int):
filename, _ = os.path.splitext(file)
dir_name = os.path.dirname(filename)
prefix = os.path.basename(filename)
load_dir = os.path.join(dir_name, 'cache')
load_file = os.path.join(load_dir, '%s_%03d.npz' % (prefix, np.random.randint(0, num_aug)))
if not os.path.isdir(load_dir):
os.makedirs(load_dir, exist_ok=True)
return load_file
def from_scratch(file, opt):
class MeshPrep:
def __getitem__(self, item):
return eval('self.' + item)
mesh_data = MeshPrep()
mesh_data.vs = mesh_data.edges = None
mesh_data.gemm_edges = mesh_data.sides = None
mesh_data.edges_count = None
mesh_data.ve = None
mesh_data.v_mask = None
mesh_data.filename = 'unknown'
mesh_data.edge_lengths = None
mesh_data.edge_areas = []
mesh_data.vs, faces = fill_from_file(mesh_data, file)
mesh_data.v_mask = np.ones(len(mesh_data.vs), dtype=bool)
faces, face_areas = remove_non_manifolds(mesh_data, faces)
if opt.num_aug > 1:
faces = augmentation(mesh_data, opt, faces)
build_gemm(mesh_data, faces, face_areas)
if opt.num_aug > 1:
post_augmentation(mesh_data, opt)
mesh_data.features = extract_features(mesh_data)
return mesh_data
def fill_from_file(mesh, file):
mesh.filename = ntpath.split(file)[1]
mesh.fullfilename = file
vs, faces = [], []
f = open(file)
for line in f:
line = line.strip()
splitted_line = line.split()
if not splitted_line:
continue
elif splitted_line[0] == 'v':
vs.append([float(v) for v in splitted_line[1:4]])
elif splitted_line[0] == 'f':
face_vertex_ids = [int(c.split('/')[0]) for c in splitted_line[1:]]
assert len(face_vertex_ids) == 3
face_vertex_ids = [(ind - 1) if (ind >= 0) else (len(vs) + ind)
for ind in face_vertex_ids]
faces.append(face_vertex_ids)
f.close()
vs = np.asarray(vs)
faces = np.asarray(faces, dtype=int)
assert np.logical_and(faces >= 0, faces < len(vs)).all()
return vs, faces
def remove_non_manifolds(mesh, faces):
mesh.ve = [[] for _ in mesh.vs]
edges_set = set()
mask = np.ones(len(faces), dtype=bool)
_, face_areas = compute_face_normals_and_areas(mesh, faces)
for face_id, face in enumerate(faces):
if face_areas[face_id] == 0:
mask[face_id] = False
continue
faces_edges = []
is_manifold = False
for i in range(3):
cur_edge = (face[i], face[(i + 1) % 3])
if cur_edge in edges_set:
is_manifold = True
break
else:
faces_edges.append(cur_edge)
if is_manifold:
mask[face_id] = False
else:
for idx, edge in enumerate(faces_edges):
edges_set.add(edge)
return faces[mask], face_areas[mask]
def build_gemm(mesh, faces, face_areas):
"""
gemm_edges: array (#E x 4) of the 4 one-ring neighbors for each edge
sides: array (#E x 4) indices (values of: 0,1,2,3) indicating where an edge is in the gemm_edge entry of the 4 neighboring edges
for example edge i -> gemm_edges[gemm_edges[i], sides[i]] == [i, i, i, i]
"""
mesh.ve = [[] for _ in mesh.vs]
edge_nb = []
sides = []
edge2key = dict()
edges = []
edges_count = 0
nb_count = []
for face_id, face in enumerate(faces):
faces_edges = []
for i in range(3):
cur_edge = (face[i], face[(i + 1) % 3])
faces_edges.append(cur_edge)
for idx, edge in enumerate(faces_edges):
edge = tuple(sorted(list(edge)))
faces_edges[idx] = edge
if edge not in edge2key:
edge2key[edge] = edges_count
edges.append(list(edge))
edge_nb.append([-1, -1, -1, -1])
sides.append([-1, -1, -1, -1])
mesh.ve[edge[0]].append(edges_count)
mesh.ve[edge[1]].append(edges_count)
mesh.edge_areas.append(0)
nb_count.append(0)
edges_count += 1
mesh.edge_areas[edge2key[edge]] += face_areas[face_id] / 3
for idx, edge in enumerate(faces_edges):
edge_key = edge2key[edge]
edge_nb[edge_key][nb_count[edge_key]] = edge2key[faces_edges[(idx + 1) % 3]]
edge_nb[edge_key][nb_count[edge_key] + 1] = edge2key[faces_edges[(idx + 2) % 3]]
nb_count[edge_key] += 2
for idx, edge in enumerate(faces_edges):
edge_key = edge2key[edge]
sides[edge_key][nb_count[edge_key] - 2] = nb_count[edge2key[faces_edges[(idx + 1) % 3]]] - 1
sides[edge_key][nb_count[edge_key] - 1] = nb_count[edge2key[faces_edges[(idx + 2) % 3]]] - 2
mesh.edges = np.array(edges, dtype=np.int32)
mesh.gemm_edges = np.array(edge_nb, dtype=np.int64)
mesh.sides = np.array(sides, dtype=np.int64)
mesh.edges_count = edges_count
mesh.edge_areas = np.array(mesh.edge_areas, dtype=np.float32) / np.sum(face_areas) #todo whats the difference between edge_areas and edge_lenghts?
def compute_face_normals_and_areas(mesh, faces):
face_normals = np.cross(mesh.vs[faces[:, 1]] - mesh.vs[faces[:, 0]],
mesh.vs[faces[:, 2]] - mesh.vs[faces[:, 1]])
face_areas = np.sqrt((face_normals ** 2).sum(axis=1))
face_normals /= face_areas[:, np.newaxis]
assert (not np.any(face_areas[:, np.newaxis] == 0)), 'has zero area face: %s' % mesh.filename
face_areas *= 0.5
return face_normals, face_areas
# Data augmentation methods
def augmentation(mesh, opt, faces=None):
if hasattr(opt, 'scale_verts') and opt.scale_verts:
scale_verts(mesh)
if hasattr(opt, 'flip_edges') and opt.flip_edges:
faces = flip_edges(mesh, opt.flip_edges, faces)
return faces
def post_augmentation(mesh, opt):
if hasattr(opt, 'slide_verts') and opt.slide_verts:
slide_verts(mesh, opt.slide_verts)
def slide_verts(mesh, prct):
edge_points = get_edge_points(mesh)
dihedral = dihedral_angle(mesh, edge_points).squeeze() #todo make fixed_division epsilon=0
thr = np.mean(dihedral) + np.std(dihedral)
vids = np.random.permutation(len(mesh.ve))
target = int(prct * len(vids))
shifted = 0
for vi in vids:
if shifted < target:
edges = mesh.ve[vi]
if min(dihedral[edges]) > 2.65:
edge = mesh.edges[np.random.choice(edges)]
vi_t = edge[1] if vi == edge[0] else edge[0]
nv = mesh.vs[vi] + np.random.uniform(0.2, 0.5) * (mesh.vs[vi_t] - mesh.vs[vi])
mesh.vs[vi] = nv
shifted += 1
else:
break
mesh.shifted = shifted / len(mesh.ve)
def scale_verts(mesh, mean=1, var=0.1):
for i in range(mesh.vs.shape[1]):
mesh.vs[:, i] = mesh.vs[:, i] * np.random.normal(mean, var)
def angles_from_faces(mesh, edge_faces, faces):
normals = [None, None]
for i in range(2):
edge_a = mesh.vs[faces[edge_faces[:, i], 2]] - mesh.vs[faces[edge_faces[:, i], 1]]
edge_b = mesh.vs[faces[edge_faces[:, i], 1]] - mesh.vs[faces[edge_faces[:, i], 0]]
normals[i] = np.cross(edge_a, edge_b)
div = fixed_division(np.linalg.norm(normals[i], ord=2, axis=1), epsilon=0)
normals[i] /= div[:, np.newaxis]
dot = np.sum(normals[0] * normals[1], axis=1).clip(-1, 1)
angles = np.pi - np.arccos(dot)
return angles
def flip_edges(mesh, prct, faces):
edge_count, edge_faces, edges_dict = get_edge_faces(faces)
dihedral = angles_from_faces(mesh, edge_faces[:, 2:], faces)
edges2flip = np.random.permutation(edge_count)
# print(dihedral.min())
# print(dihedral.max())
target = int(prct * edge_count)
flipped = 0
for edge_key in edges2flip:
if flipped == target:
break
if dihedral[edge_key] > 2.7:
edge_info = edge_faces[edge_key]
if edge_info[3] == -1:
continue
new_edge = tuple(sorted(list(set(faces[edge_info[2]]) ^ set(faces[edge_info[3]]))))
if new_edge in edges_dict:
continue
new_faces = np.array(
[[edge_info[1], new_edge[0], new_edge[1]], [edge_info[0], new_edge[0], new_edge[1]]])
if check_area(mesh, new_faces):
del edges_dict[(edge_info[0], edge_info[1])]
edge_info[:2] = [new_edge[0], new_edge[1]]
edges_dict[new_edge] = edge_key
rebuild_face(faces[edge_info[2]], new_faces[0])
rebuild_face(faces[edge_info[3]], new_faces[1])
for i, face_id in enumerate([edge_info[2], edge_info[3]]):
cur_face = faces[face_id]
for j in range(3):
cur_edge = tuple(sorted((cur_face[j], cur_face[(j + 1) % 3])))
if cur_edge != new_edge:
cur_edge_key = edges_dict[cur_edge]
for idx, face_nb in enumerate(
[edge_faces[cur_edge_key, 2], edge_faces[cur_edge_key, 3]]):
if face_nb == edge_info[2 + (i + 1) % 2]:
edge_faces[cur_edge_key, 2 + idx] = face_id
flipped += 1
# print(flipped)
return faces
def rebuild_face(face, new_face):
new_point = list(set(new_face) - set(face))[0]
for i in range(3):
if face[i] not in new_face:
face[i] = new_point
break
return face
def check_area(mesh, faces):
face_normals = np.cross(mesh.vs[faces[:, 1]] - mesh.vs[faces[:, 0]],
mesh.vs[faces[:, 2]] - mesh.vs[faces[:, 1]])
face_areas = np.sqrt((face_normals ** 2).sum(axis=1))
face_areas *= 0.5
return face_areas[0] > 0 and face_areas[1] > 0
def get_edge_faces(faces):
edge_count = 0
edge_faces = []
edge2keys = dict()
for face_id, face in enumerate(faces):
for i in range(3):
cur_edge = tuple(sorted((face[i], face[(i + 1) % 3])))
if cur_edge not in edge2keys:
edge2keys[cur_edge] = edge_count
edge_count += 1
edge_faces.append(np.array([cur_edge[0], cur_edge[1], -1, -1]))
edge_key = edge2keys[cur_edge]
if edge_faces[edge_key][2] == -1:
edge_faces[edge_key][2] = face_id
else:
edge_faces[edge_key][3] = face_id
return edge_count, np.array(edge_faces), edge2keys
def set_edge_lengths(mesh, edge_points=None):
if edge_points is not None:
edge_points = get_edge_points(mesh)
edge_lengths = np.linalg.norm(mesh.vs[edge_points[:, 0]] - mesh.vs[edge_points[:, 1]], ord=2, axis=1)
mesh.edge_lengths = edge_lengths
def extract_features(mesh):
features = []
edge_points = get_edge_points(mesh)
set_edge_lengths(mesh, edge_points)
with np.errstate(divide='raise'):
try:
for extractor in [dihedral_angle, symmetric_opposite_angles, symmetric_ratios]:
feature = extractor(mesh, edge_points)
features.append(feature)
return np.concatenate(features, axis=0)
except Exception as e:
print(e)
raise ValueError(mesh.filename, 'bad features')
def dihedral_angle(mesh, edge_points):
normals_a = get_normals(mesh, edge_points, 0)
normals_b = get_normals(mesh, edge_points, 3)
dot = np.sum(normals_a * normals_b, axis=1).clip(-1, 1)
angles = np.expand_dims(np.pi - np.arccos(dot), axis=0)
return angles
def symmetric_opposite_angles(mesh, edge_points):
""" computes two angles: one for each face shared between the edge
the angle is in each face opposite the edge
sort handles order ambiguity
"""
angles_a = get_opposite_angles(mesh, edge_points, 0)
angles_b = get_opposite_angles(mesh, edge_points, 3)
angles = np.concatenate((np.expand_dims(angles_a, 0), np.expand_dims(angles_b, 0)), axis=0)
angles = np.sort(angles, axis=0)
return angles
def symmetric_ratios(mesh, edge_points):
""" computes two ratios: one for each face shared between the edge
the ratio is between the height / base (edge) of each triangle
sort handles order ambiguity
"""
ratios_a = get_ratios(mesh, edge_points, 0)
ratios_b = get_ratios(mesh, edge_points, 3)
ratios = np.concatenate((np.expand_dims(ratios_a, 0), np.expand_dims(ratios_b, 0)), axis=0)
return np.sort(ratios, axis=0)
def get_edge_points(mesh):
""" returns: edge_points (#E x 4) tensor, with four vertex ids per edge
for example: edge_points[edge_id, 0] and edge_points[edge_id, 1] are the two vertices which define edge_id
each adjacent face to edge_id has another vertex, which is edge_points[edge_id, 2] or edge_points[edge_id, 3]
"""
edge_points = np.zeros([mesh.edges_count, 4], dtype=np.int32)
for edge_id, edge in enumerate(mesh.edges):
edge_points[edge_id] = get_side_points(mesh, edge_id)
# edge_points[edge_id, 3:] = mesh.get_side_points(edge_id, 2)
return edge_points
def get_side_points(mesh, edge_id):
# if mesh.gemm_edges[edge_id, side] == -1:
# return mesh.get_side_points(edge_id, ((side + 2) % 4))
# else:
edge_a = mesh.edges[edge_id]
if mesh.gemm_edges[edge_id, 0] == -1:
edge_b = mesh.edges[mesh.gemm_edges[edge_id, 2]]
edge_c = mesh.edges[mesh.gemm_edges[edge_id, 3]]
else:
edge_b = mesh.edges[mesh.gemm_edges[edge_id, 0]]
edge_c = mesh.edges[mesh.gemm_edges[edge_id, 1]]
if mesh.gemm_edges[edge_id, 2] == -1:
edge_d = mesh.edges[mesh.gemm_edges[edge_id, 0]]
edge_e = mesh.edges[mesh.gemm_edges[edge_id, 1]]
else:
edge_d = mesh.edges[mesh.gemm_edges[edge_id, 2]]
edge_e = mesh.edges[mesh.gemm_edges[edge_id, 3]]
first_vertex = 0
second_vertex = 0
third_vertex = 0
if edge_a[1] in edge_b:
first_vertex = 1
if edge_b[1] in edge_c:
second_vertex = 1
if edge_d[1] in edge_e:
third_vertex = 1
return [edge_a[first_vertex], edge_a[1 - first_vertex], edge_b[second_vertex], edge_d[third_vertex]]
def get_normals(mesh, edge_points, side):
edge_a = mesh.vs[edge_points[:, side // 2 + 2]] - mesh.vs[edge_points[:, side // 2]]
edge_b = mesh.vs[edge_points[:, 1 - side // 2]] - mesh.vs[edge_points[:, side // 2]]
normals = np.cross(edge_a, edge_b)
div = fixed_division(np.linalg.norm(normals, ord=2, axis=1), epsilon=0.1)
normals /= div[:, np.newaxis]
return normals
def get_opposite_angles(mesh, edge_points, side):
edges_a = mesh.vs[edge_points[:, side // 2]] - mesh.vs[edge_points[:, side // 2 + 2]]
edges_b = mesh.vs[edge_points[:, 1 - side // 2]] - mesh.vs[edge_points[:, side // 2 + 2]]
edges_a /= fixed_division(np.linalg.norm(edges_a, ord=2, axis=1), epsilon=0.1)[:, np.newaxis]
edges_b /= fixed_division(np.linalg.norm(edges_b, ord=2, axis=1), epsilon=0.1)[:, np.newaxis]
dot = np.sum(edges_a * edges_b, axis=1).clip(-1, 1)
return np.arccos(dot)
def get_ratios(mesh, edge_points, side):
edges_lengths = np.linalg.norm(mesh.vs[edge_points[:, side // 2]] - mesh.vs[edge_points[:, 1 - side // 2]],
ord=2, axis=1)
point_o = mesh.vs[edge_points[:, side // 2 + 2]]
point_a = mesh.vs[edge_points[:, side // 2]]
point_b = mesh.vs[edge_points[:, 1 - side // 2]]
line_ab = point_b - point_a
projection_length = np.sum(line_ab * (point_o - point_a), axis=1) / fixed_division(
np.linalg.norm(line_ab, ord=2, axis=1), epsilon=0.1)
closest_point = point_a + (projection_length / edges_lengths)[:, np.newaxis] * line_ab
d = np.linalg.norm(point_o - closest_point, ord=2, axis=1)
return d / edges_lengths
def fixed_division(to_div, epsilon):
if epsilon == 0:
to_div[to_div == 0] = 0.1
else:
to_div += epsilon
return to_div