-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
205 lines (159 loc) · 7.68 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from fastai import *
from fastai.vision import *
from fastai.callbacks import *
from pathlib import Path
import torch
import scipy.ndimage
import base64
import uuid
from flask import Flask, render_template, request, jsonify
from io import BytesIO
import os
path = Path(".")
keywords = 'champignon,oesterzwam,tropische beurszwam,shiitake,morielje,cantharel,gewoon eekhoorntjesbrood,Truffels,zwavelzwam,geschubde inktzwam,gewone fluweelpootje,gordijnzwam,doodstrompet,Anijschampignon,Reuzenchampignon,Appelrussula,Biefstukzwam,Gele stekelzwam,Gewone fopzwam,Grote parasolzwam,Grote sponszwam,Grote stinkzwam,Judasoor,Kastanjeboleet,Knolparasolzwam,Koeienboleet,Paarse schijnridderzwam,Paarssteelschijnridderzwam,Parelamaniet,Pruikzwam,Regenboogrussula,Reuzenbovist,Roodbruine slanke amaniet,Voorjaarspronkridder,Weidechampignon,Zwavelzwam,Smakelijke russula,Zwartwitte veldridderzwam,Parelhoenchampignon,Karbolchampignon,Narcisamaniet,Vliegenzwam,Panteramaniet,Groene knolamaniet,Porfieramaniet,Voorjaarsamaniet,Kleverige knolamaniet,Netstelige heksenboleet,Satansboleet,Witte trechterzwammen,Witte bundelridderzwam,Grote bostrechterzwam,Grote kale inktzwam,Berkenzwam,Gordijnzwammen,Vermiljoengordijnzwam,Pagemantel,Satijnzwam,Bundelmosklokje,Prachtvlamhoed,Voorjaarskluifzwam,Radijsvaalhoed,Witte kluifzwam,Zwarte kluifzwam,Gewone zwavelkop,Vezelkoppen,Sterspoorvezelkop,Giftige vezelkop,Witte satijnvezelkop,Zandpad vezelkop,Geelbruine spleetvezelkop,Parasolzwammen,Spitsschubbige parasolzwam,Kastanjeparasolzwam,Gewoon elfenschermpje,Zwartbruine vlekplaat,Grauwe vlekplaat,Gazonvlekplaat,Gewone krulzoom,Grauwgroene hertenzwam,Kaalkopjes,Puntig kaalkopje,Fraaie koraalzwam,Duivelsbroodrussula,Braakrussula,Blauwvoetstekelzwam,Kroonbekerzwam,Kleine aardappelbovist,Gele aardappelbovist,Wortelende aardappelbovist,Oranje ridderzwam,Gele ridderzwam,Narcisridderzwam,Beukenridderzwam'
classes = keywords.split(',')
data = ImageDataBunch.single_from_classes(path, classes, tfms=get_transforms(), size=224).normalize(imagenet_stats)
learn = create_cnn(data, models.resnet34, metrics=accuracy)
learn.model.eval()
learn.load('all_incl_latin_resnet34_defaults_424_')
mr_df = pd.read_csv(path/'mushrooms.csv')
app = Flask(__name__)
@app.route('/')
def home():
return render_template('upload.html')
@app.route('/about')
def about():
return render_template('about.html')
@app.route("/upload", methods=["POST"])
def upload():
bytes = request.files['file'].read()
return predict_image_from_bytes(bytes)
def get_class_info(class_index, classes, certainty, mr_df):
class_name = classes[class_index]
row = mr_df.loc[mr_df['name'] == class_name]
latin_name = row.values[0][1]
wiki_link = row.values[0][2]
eatable = row.values[0][3]
# example_image = os.listdir(path/'static'/'images'/class_name)[0]
eatable_class = 'not_eatable'
if(eatable):
eatable_class = 'eatable'
return {
'wiki_link': wiki_link,
'example_image': ['aaa.jpg', 'bbb.jpg'],
'eatable_class': eatable_class,
'class_name' : class_name,
'latin_name': latin_name,
'certainty': certainty
}
# https://github.com/henripal/maps_webapp/blob/master/model_backend/cities.py
def predict_image_from_bytes(bytes):
img = open_image(BytesIO(bytes))
(class_name, class_index, certainties) = learn.predict(img)
certainties = certainties.numpy()
# print(certainties)
n = 3
top_three = np.argsort(certainties)[::-1][:n]
predictions = [get_class_info(i, classes, certainties[i], mr_df) for i in top_three]
if(certainties[top_three[:1]] < 0.4):
predict_html = render_template('no-mushroom.html',
predictions=predictions)
title = "Uhmm, that's not a mushroom"
subtitle = ''
return jsonify({
'predict_html': predict_html,
'title': predictions[0]['latin_name'],
'subtitle': 'Let me show your some examples'})
random_user_file_name = str(uuid.uuid4().hex)
heatmap_from_img(img, random_user_file_name)
predict_html = render_template('prediction.html',
predictions=predictions,
heatmap=random_user_file_name)
example_html = render_template('examples.html', predictions=predictions)
lookalikes_html = render_template('lookalikes.html', predictions=predictions)
return jsonify({
'predict_html': predict_html,
'title': 'Looks like the ' + predictions[0]['latin_name'],
'subtitle': 'Please check the example images below to be sure',
'example_html': example_html,
'lookalikes_html' : lookalikes_html
})
def heatmap_from_img(img, random_user_file_name):
img.save('static/user_images/'+random_user_file_name+'.png')
img = img.resize(224)
# pred_class, pred_idx, outputs = learn.predict(img)
img = img.px.reshape(1, 3, 224, 224)
upsampled = run_gradcam(img)
gbp_map = run_gbp(img)
upsampled_to_b64bytes(upsampled, gbp_map, random_user_file_name)
def upsampled_to_b64bytes(upsampled, img, random_user_file_name):
"""
this combines upsampled heatmap and img
and returns b64 encoded bytes for the image
"""
figfile = BytesIO()
fig = plt.figure(frameon=False)
fig.set_size_inches(2,2)
# all this to remove borders
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
combined = np.einsum('ijk, ij->ijk',img, upsampled)
ax.imshow(combined)
plt.savefig('static/user_images/'+random_user_file_name+'_heatmap.png')
# figfile.seek(0)
# figdata_png = base64.b64encode(figfile.getvalue())
# return figdata_png
def run_gradcam(img):
"""
returns the heatmap for the given image
"""
# last bottleneck module
learn.model.eval()
target_layer = learn.model[0][7][2]
fmap_hook, gradient_hook = create_hooks(target_layer)
run_backprop_once(img)
gradient = next(iter(gradient_hook.stored))
linearization = gradient.cpu().numpy().sum((2, 3)).reshape(-1)
fmaps = fmap_hook.stored.cpu().numpy()
fmaps = fmaps.reshape(512, 7, 7)
hm = np.maximum(0, np.einsum('i, ijk',linearization, fmaps))
upsampled = scipy.ndimage.zoom(hm, 32)
return normalize_image(upsampled)
def create_hooks(target_layer):
fmap_hook = callbacks.hook_output(target_layer)
gradient_hook = callbacks.Hook(target_layer, gradient_torch_hook, is_forward=False)
return fmap_hook, gradient_hook
def run_backprop_once(img):
learn.model.zero_grad()
# forward
out = learn.model(img)
# gradient wrt the predicted class only
onehot = torch.zeros(learn.data.c)
onehot[torch.argmax(out)] = 1.0
# backwrd
out.backward(gradient=onehot.reshape(1, -1))
def gradient_torch_hook(self, grad_input, grad_output):
return grad_input
def normalize_image(image):
return (image-np.min(image))/(np.max(image)-np.min(image))
def run_gbp(img):
learn.model.eval()
create_gp_hooks()
img.requires_grad_()
run_backprop_once(img)
return image_from_tensor(img.grad)
def create_gp_hooks():
relu_modules = [module[1] for module in learn.model.named_modules() if str(module[1]) == "ReLU(inplace)"]
hooks = Hooks(relu_modules, clamp_gradients_hook, is_forward=False)
def clamp_gradients_hook(module, grad_in, grad_out):
for grad in grad_in:
torch.clamp_(grad, min=0.0)
def image_from_tensor(imagetensor):
numpied = torch.squeeze(imagetensor)
numpied = np.moveaxis(numpied.detach().cpu().numpy(), 0 , -1)
return normalize_image(numpied)
if __name__ == '__main__':
if "serve" in sys.argv:
port = int(os.environ.get("PORT", 8008))
app.run(debug=True, host='0.0.0.0', port=port)