This repository has been archived by the owner on Jun 23, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
433 lines (326 loc) · 13.4 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# SPACEGERM shiny app server script
# Copyright (C) 2017-2018 Marcel Schilling
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#######################
# general information #
#######################
# file: server.R
# author(s): Marcel Schilling <marcel.schilling@mdc-berlin.de>
# created: 2017-02-21
# last update: 2018-09-03
# license: GNU Affero General Public License Version 3 (GNU AGPL v3)
# purpose: define back end for SPACEGERM shiny app
######################################
# change log (reverse chronological) #
######################################
# 2018-09-03: fixed crashes on Shiny Server Pro VM
# 2018-08-16: added support user specified location measure
# 2018-05-31: added support for gene profiles passed in as database query
# added support for slice data passed in as database query
# 2018-05-17: replaced require by library
# 2018-05-16: renamed app for publication
# 2018-04-23: added 3D expression range inputs
# 2018-04-16: renamed y-axis limits inputs to expression range inputs
# 2018-04-13: added 3D model gene name default
# replaced user specified sample shifts by defaults
# replaced user specified sample description for heatmap by default
# added user specified smoothing span for 3D model
# added 3D model gene/genotype selection and CPM fitting support / fixed indentation
# 2018-04-09: removed sample stretches input
# 2018-04-03: added user specified smoothing span
# added user specified smoothing point count
# 2018-03-21: added user specified abundance unit
# 2017-10-23: added user specified expression level (gene/isoform profiles?)
# 2017-10-17: replaced renderPlotly by (new) renderIheatmap
# 2017-05-29: added dynamic sample stretch input panel assignment & corresponding user input support
# 2017-05-23: added filtering of genes by peak CPM minimum specified by the user
# 2017-05-22: added support for user specified y-axis limits
# 2017-05-17: replaced user specified heatmap options by user specified abundance measure
# added user specified row normalization choice
# 2017-04-19: added user specified distance metric choice
# 2017-04-18: added user specified gene type filtering
# 2017-04-13: added gene table annotation
# 2017-04-12: switched (back) from gene rank to count based filtering
# moved gene rank based filtering out of heatmap function
# moved genotype based filtering out of heatmap function
# moved sample description based filtering out of heatmap function
# moved gene list based filtering out of heatmap function
# 2017-04-11: added user specified gene list file input
# 2017-04-10: added gene table XLSX export button assignment
# 2017-04-06: added gene table output assignment
# 2017-04-05: added user specified heatmap option selection
# added user specified gene cluster count
# 2017-03-29: added dynamic genotype input panel & heatmap output panel assignment
# 2017-03-19: added user specified plot columns count
# 2017-02-24: added license comment
# added dynamic sample shift input panel assignment & corresponding user input support
# 2017-02-23: added user specified plot option selection
# added user specified sample selection
# replaced gene names output assignment by profile plot output assignment
# 2017-02-21: added gene names output assignment
# initial version (empty template)
###########
# options #
###########
# Note: Without this, the app crashed repeatedly on our Shiny Server Pro VM:
options(java.parameters = "-Xss2560k")
#############
# libraries #
#############
# get pipe operators
library(magrittr)
# get renderIheatmap
library(iheatmapr)
library(plotly)
#############
# functions #
#############
# load functions
source("functions.R")
########
# data #
########
# load input data
source("data.R")
################
# shiny server #
################
# define shiny server function parameters
function(input, output, session){
updateSelectizeInput(session, 'gene3d', choices = input.data$genes.name,
selected = params$gene3d.input.default, server = TRUE)
output$manual.exprmin.input <-
renderUI(generate.manual.exprmin.input(input$plot.options))
output$manual.exprmax.input <-
renderUI(generate.manual.exprmax.input(input$plot.options,
exprmin = input$manual.exprmin))
# cache model plot
model.plot <- reactive(input.data$gonad.model %>%
plot.model(input$location.measure))
# assign profile plot output
output$profile.plot<-
renderPlot({
if(input$gene.names %in% "chicken!"){
profile.plot <-
ggdraw() +
draw_image(paste0("http://www.factroom.ru/facts/wp-content/uploa",
"ds/2013/12/319-620x411.jpg")) +
draw_label("There is no gene called chicken!", colour = "white",
fontface = "bold", y = .3, size = 32)
} else {
profile.plot <-
input.data$slice.data %>%
generate.profile.plot(
gene.names = input$gene.names,
sample.names = input$sample.names,
plot.options = input$plot.options,
manual.exprlim = c(input$manual.exprmin, input$manual.exprmax),
ncols.plot = input$ncols.plot,
per.isoform = input$isoform.level,
unit = input$abundance.unit,
location = input$location.measure,
smoothing.n = input$smoothing.n,
smoothing.span = input$smoothing.span,
model2d = model.plot())}
profile.plot})
# assign genotype input panel output
output$genotype.input <-
renderUI(generate.genotype.input(params$sample.description.input.default))
output$genotype3d.input <-
renderUI(generate.genotype.input(params$sample.description.input.default,
id = "genotype3d"))
# assign gene type input panel output
output$gene.type.input <-
renderUI(
generate.gene.type.input(params$sample.description.input.default,
input$genotype))
output$manual.exprmin3d.input <-
renderUI(generate.manual.exprmin.input(input$plot.options3d,
id = "manual.exprmin3d"))
output$manual.exprmax3d.input <-
renderUI(generate.manual.exprmax.input(input$plot.options3d,
exprmin = input$manual.exprmin3d,
id = "manual.exprmax3d"))
# assign gene list filtered gene profiles
gene.profiles.filtered.gene.list<-
# re-calculate gene list filtered gene profiles when necessary
reactive(
# take gene profiles
input.data$gene.profiles %>%
# extract gene profiles for genes in gene list file specified by the user
filter.data.by.genes.file(input$gene.list.file)
# end gene list filtered gene profiles re-calculation
)
# assign sample description filtered gene profiles
gene.profiles.filtered.sample.description<-
# re-calculate sample description filtered gene profiles when necessary
reactive(
# take gene list filtered gene profiles
gene.profiles.filtered.gene.list() %>%
# extract gene profiles for sample description specified by the user
filter.data.by.sample.description(params$sample.description.input.default))
# assign genotype filtered gene profiles
gene.profiles.filtered.genotype<-
# re-calculate genotype filtered gene profiles when necessary
reactive(
# take sample description filtered gene profiles
gene.profiles.filtered.sample.description() %>%
# extract gene profiles for genotype specified by the user
filter.data.by.genotype(input$genotype)
# end genotype filtered gene profiles re-calculation
)
# assign gene type filtered gene profiles
gene.profiles.filtered.gene.type<-
# re-calculate gene type filtered gene profiles when necessary
reactive(
# take genotype filtered gene profiles
gene.profiles.filtered.genotype() %>%
# extract gene profiles for gene type specified by the user
filter.data.by.gene.type(input$gene.type)
# end gene type filtered gene profiles re-calculation
)
# assign minimum peak CPM filtered gene profiles
gene.profiles.filtered.min.cpm.max<-
# re-calculate minimum peak CPM filtered gene profiles when necessary
reactive(
# take gene type filtered gene profiles
gene.profiles.filtered.gene.type() %>%
collect %>%
# extract gene profiles for genes with peak CPM above minimum specified by the user
filter.data.by.min.cpm.max(input$min.cpm.max)
# end minimum peak CPM filtered gene profiles re-calculation
)
# assign top gene profiles
gene.profiles.top<-
# re-calculate top gene profiles when necessary
reactive(
# take minimum peak CPM filtered gene profiles
gene.profiles.filtered.min.cpm.max() %>%
# keep top varying genes
keep.top.genes
# end top gene profiles re-calculation
)
# assign heatmap object
heatmap.object<-
# re-calculate heatmap when necessary
reactive(
# take top gene profiles
gene.profiles.top() %>%
# generate heatmap
generate.heatmap(
# cluster genes into as many clusters as specified by the user
nclust.genes=input$nclust.genes
# set abundance measure specified by the user
,abundance.measure=input$abundance.measure
# set row normalization specified by the user
,row.normalization=input$row.normalization
# set distance metric specified by the user
,distance.metric=input$distance.metric
# end heatmap generation
)
# end heatmap re-calculation
)
# assign heatmap output
output$heatmap<-
# render heatmap
renderIheatmap(
# take heatmap object
heatmap.object()
# end heatmap rendering
)
output$model3d <-
renderPlotly(
plot.model3d(
outline = input.data$gonad.model$outline,
cpm.fit = input.data$slice.data %>%
filter(gene.name == input$gene3d,
genotype == input$genotype3d) %>%
collect %>%
fit.cpm(model.length = max(input.data$gonad.model$outline$dp),
smoothing.span = input$span3d),
plot.options = input$plot.options3d,
manual.exprlim = c(input$manual.exprmin3d, input$manual.exprmax3d)))
# assign gene annotation
gene.annotation<-
# re-calculate gene annotation when necessary
reactive(
# take gene profiles
gene.profiles.top() %>%
# extract gene annotation
get.gene.annotation
# end gene annotation re-calculation
)
# assign gene table object
gene.table.object<-
# re-calculate gene table when necessary
reactive(
# take heatmap object
heatmap.object() %>%
# generate gene table
generate.gene.table(
# annotate gene table with annotation extracted from gene profile table
annotation=gene.annotation()
# end gene table generation
)
# end gene table re-calculation
)
# assign gene table output
output$gene.table<-
# render gene table
renderDataTable(
# take gene table object
gene.table.object()
# set table rendering option
,options=
# generate gene table options using helper function
generate.gene.table.options
# end gene table rendering
)
# assign gene table XLSX export button
output$gene.table.xlsx.export.button<-
# generate file download for gene table XLSX export
downloadHandler(
# set file name for file download
filename=
# use file name defined for gene table XLSX export
get.gene.table.xlsx.name
# set file content for file download
,content=
# define gene table XLSX export file content generation function
function(
# out file name specified by downloadHandler
file
# end gene table XLSX export file content generation function parameter definition
)
# begin gene table XLSX export file content generation function definition
{
# use gene table object
gene.table.object() %>%
# save gene table to XLSX
save.gene.table.xlsx(
# set output file name for gene table XLSX
output.xlsx=
# use file name specified by downloadHandler
file
# end gene table XLSX export
)
# end gene table XLSX export file content generation function definition
}
# end file download generation for gene table XLSX export
)
# end shiny server function definition
} %>%
# initialize shiny server
shinyServer