forked from richardaecn/cvpr18-inaturalist-transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.sh
executable file
·51 lines (43 loc) · 1.36 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/bin/sh
# CUDA_VISIBLE_DEVICES=0 ./train.sh
DATASET_NAME=cub_200
DATASET_DIR=./data/
MODEL_DIR=./checkpoints/${DATASET_NAME}
CHECKPOINT_PATH=./checkpoints/inception/inception_v3_iNat_299.ckpt
CHECKPOINT_EXCLUDE_SCOPES=Logits
# fine-tune last layer
TRAINABLE_SCOPES=Logits
MODEL_NAME=inception_v3
OPTIMIZER=momentum
LR=0.01
END_LR=0.0001
LR_DECAY=0.1
EPOCHS_PER_DECAY=10.0
TRAIN_BATCH_SIZE=64
TRAIN_IMAGE_SIZE=299
LOG_STEPS=10
SAVE_SUMMARIES_SECS=10
SAVE_MODEL_SECS=60
# fine-tune last layer for 30 epochs.
# cub_200 has 5994 training images, with 64 train batch size:
# 1 epoch = 94 steps, 30 epochs = 2810 steps.
MAX_STEPS=2810
python train.py \
--train_dir=${MODEL_DIR} \
--dataset_dir=${DATASET_DIR} \
--dataset_name=${DATASET_NAME} \
--model_name=${MODEL_NAME} \
--checkpoint_path=${CHECKPOINT_PATH} \
--checkpoint_exclude_scopes=${CHECKPOINT_EXCLUDE_SCOPES} \
--trainable_scopes=${TRAINABLE_SCOPES} \
--optimizer=${OPTIMIZER} \
--learning_rate=${LR} \
--end_learning_rate=${END_LR} \
--learning_rate_decay_factor=${LR_DECAY} \
--num_epochs_per_decay=${EPOCHS_PER_DECAY} \
--batch_size=${TRAIN_BATCH_SIZE} \
--train_image_size=${TRAIN_IMAGE_SIZE} \
--max_number_of_steps=${MAX_STEPS} \
--log_every_n_steps=${LOG_STEPS} \
--save_summaries_secs=${SAVE_SUMMARIES_SECS} \
--save_interval_secs=${SAVE_MODEL_SECS}