-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcat_or_dog_detection.py
111 lines (94 loc) · 3.58 KB
/
cat_or_dog_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import imutils
import time
import cv2
from api_thread import ApiCallThread
from dotenv import dotenv_values
import os
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
BACKEND_URL=os.getenv("BACKEND_URL")
def detect_cat_dog(url):
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["cat", "dog"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe('MobileNetSSD_deploy.prototxt.txt', 'MobileNetSSD_deploy.caffemodel')
# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
fps = FPS().start()
api_call_every = 2.0 # seconds
snap_time = time.time()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# print(type(frame))
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > 0.2:
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
_idx = int(detections[0, 0, i, 1])
# 8 for cat and 12 for dog
if _idx in [8, 12]:
new_time = time.time()
if (new_time - snap_time) >= api_call_every and (confidence*100) > 50: # Call API as per confidence level
ApiCallThread(_idx, frame, confidence, url).start()
snap_time = time.time()
if _idx == 8: # For cat detection
idx = 0
elif _idx == 12: # For dog detection
idx = 1
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
if __name__ == "__main__":
# api_endpoint = "http://127.0.0.1:8000/image_detection/cat_or_dog_image/" # FOr local
api_endpoint = f"{BACKEND_URL}/image_detection/cat_or_dog_image/" # For live
detect_cat_dog(url=api_endpoint)