-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathutils.jl
217 lines (181 loc) · 7.46 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
reorder(A::Union{AbstractDimArray,AbstractDimStack}, order::Pair...)
reorder(A::Union{AbstractDimArray,AbstractDimStack}, order)
reorder(A::Dimension, order::Order)
Reorder every dims index/array to `order`, or reorder index for
the given dimension(s) in `order`.
`order` can be an [`Order`](@ref), `Dimension => Order` pairs.
A Tuple of Dimensions or any object that defines `dims` can be used
in which case the dimensions of this object are used for reordering.
If no axis reversal is required the same objects will be returned, without allocation.
## Example
```jldoctest
using DimensionalData
# Create a DimArray
da = DimArray([1 2 3; 4 5 6], (X(10:10:20), Y(300:-100:100)))
# Reverse it
rev = reverse(da, dims=Y)
# using `da` in reorder will return it to the original order
reorder(rev, da) == da
# output
true
```
"""
function reorder end
reorder(x, A::Union{AbstractDimArray,AbstractDimStack,AbstractDimIndices}) = reorder(x, dims(A))
reorder(x, ::Nothing) = throw(ArgumentError("object has no dimensions"))
reorder(x, p::Pair, ps::Vararg{Pair}) = reorder(x, (p, ps...))
reorder(x, ps::Tuple{Vararg{Pair}}) = reorder(x, Dimensions.pairs2dims(ps...))
# Reorder specific dims.
reorder(x, dimwrappers::Tuple) = _reorder(x, dimwrappers)
# Reorder all dims.
reorder(x, ot::Order) = reorder(x, typeof(ot))
reorder(x, ot::Type{<:Order}) = _reorder(x, map(d -> rebuild(d, ot), dims(x)))
reorder(dim::Dimension, ot::Type{<:Order}) =
ot <: basetypeof(order(dim)) ? dim : reverse(dim)
# Recursive reordering. x may be reversed here
function _reorder(x, orderdims::DimTuple)
ods = commondims(orderdims, dims(x))
_reorder(reorder(x, ods[1]), tail(ods))
end
_reorder(x, orderdims::Tuple{}) = x
reorder(x, orderdim::Dimension) = _reorder(val(orderdim), x, dims(x, orderdim))
reorder(x, orderdim::Dimension{<:Lookup}) = _reorder(order(orderdim), x, dims(x, orderdim))
_reorder(neworder::Order, x, dim::Dimension) = _reorder(basetypeof(neworder), x, dim)
# Reverse the dimension index
_reorder(::Type{O}, x, dim::Dimension) where O<:Ordered =
order(dim) isa O ? x : reverse(x; dims=dim)
_reorder(ot::Type{Unordered}, x, dim::Dimension) = x
"""
modify(f, A::AbstractDimArray) => AbstractDimArray
modify(f, s::AbstractDimStack) => AbstractDimStack
modify(f, dim::Dimension) => Dimension
modify(f, x, lookupdim::Dimension) => typeof(x)
Modify the parent data, rebuilding the object wrapper without
change. `f` must return a `AbstractArray` of the same size as the original.
This method is mostly useful as a way of swapping the parent array type of
an object.
## Example
If we have a previously-defined `DimArray`, we can copy it to an Nvidia GPU with:
```julia
A = DimArray(rand(100, 100), (X, Y))
modify(CuArray, A)
```
This also works for all the data layers in a `DimStack`.
"""
function modify end
modify(f, s::AbstractDimStack) = maplayers(a -> modify(f, a), s)
# Stack optimisation to avoid compilation to build all the `AbstractDimArray`
# layers, and instead just modify the parent data directly.
modify(f, s::AbstractDimStack{<:Any,<:NamedTuple}) =
rebuild(s; data=map(a -> modify(f, a), parent(s)))
function modify(f, A::AbstractDimArray)
newdata = f(parent(A))
size(newdata) == size(A) || error("$f returns an array with a different size")
rebuild(A, newdata)
end
modify(f, x, dim::DimOrDimType) = set(x, modify(f, dims(x, dim)))
modify(f, dim::Dimension) = rebuild(dim, modify(f, val(dim)))
function modify(f, lookup::Lookup)
newindex = modify(f, parent(lookup))
rebuild(lookup; data=newindex)
end
function modify(f, index::AbstractArray)
newindex = f(index)
size(newindex) == size(index) || error("$f returns a vector with a different size")
newindex
end
"""
broadcast_dims(f, sources::AbstractDimArray...) => AbstractDimArray
Broadcast function `f` over the `AbstractDimArray`s in `sources`, permuting and reshaping
dimensions to match where required. The result will contain all the dimensions in
all passed in arrays in the order in which they are found.
## Arguments
- `sources`: `AbstractDimArrays` to broadcast over with `f`.
This is like broadcasting over every slice of `A` if it is
sliced by the dimensions of `B`.
"""
function broadcast_dims(f, As::AbstractBasicDimArray...)
dims = combinedims(As...)
T = Base.Broadcast.combine_eltypes(f, As)
broadcast_dims!(f, similar(first(As), T, dims), As...)
end
function broadcast_dims(f, As::Union{AbstractDimStack,AbstractBasicDimArray}...)
st = _firststack(As...)
nts = _as_extended_nts(NamedTuple(st), As...)
layers = map(keys(st)) do name
broadcast_dims(f, map(nt -> nt[name], nts)...)
end
rebuild_from_arrays(st, layers)
end
"""
broadcast_dims!(f, dest::AbstractDimArray, sources::AbstractDimArray...) => dest
Broadcast function `f` over the `AbstractDimArray`s in `sources`, writing to `dest`.
`sources` are permuting and reshaping dimensions to match where required.
The result will contain all the dimensions in all passed in arrays, in the order in
which they are found.
## Arguments
- `dest`: `AbstractDimArray` to update.
- `sources`: `AbstractDimArrays` to broadcast over with `f`.
"""
function broadcast_dims!(f, dest::AbstractDimArray{<:Any,N}, As::AbstractBasicDimArray...) where {N}
As = map(As) do A
isempty(otherdims(A, dims(dest))) || throw(DimensionMismatch("Cannot broadcast over dimensions not in the dest array"))
# comparedims(dest, dims(A, dims(dest)))
# Lazily permute B dims to match the order in A, if required
_maybe_lazy_permute(A, dims(dest))
end
od = map(A -> otherdims(dest, dims(A)), As)
return _broadcast_dims_inner!(f, dest, As, od)
end
# Function barrier
function _broadcast_dims_inner!(f, dest, As, od)
# Broadcast over b for each combination of dimensional indices D
if all(map(isempty, od))
dest .= f.(As...)
else
not_shared_dims = combinedims(od...)
reshaped = map(As) do A
_maybe_insert_length_one_dims(A, dims(dest))
end
dest .= f.(reshaped...)
end
return dest
end
@deprecate dimwise broadcast_dims
@deprecate dimwise! broadcast_dims!
# Get a tuple of unique keys for DimArrays. If they have the same
# name we call them layerI.
function uniquekeys(das::Tuple{AbstractDimArray,Vararg{AbstractDimArray}})
uniquekeys(map(Symbol ∘ name, das))
end
function uniquekeys(das::Vector{<:AbstractDimArray})
length(das) == 0 ? Symbol[] : uniquekeys(map(Symbol ∘ name, das))
end
function uniquekeys(keys::Vector{Symbol})
map(enumerate(keys)) do (id, k)
count(k1 -> k == k1, keys) > 1 ? Symbol(:layer, id) : k
end
end
function uniquekeys(keys::Tuple{Symbol,Vararg{Symbol}})
ids = ntuple(x -> x, length(keys))
map(keys, ids) do k, id
count(k1 -> k == k1, keys) > 1 ? Symbol(:layer, id) : k
end
end
uniquekeys(t::Tuple) = ntuple(i -> Symbol(:layer, i), length(t))
uniquekeys(nt::NamedTuple) = keys(nt)
_as_extended_nts(nt::NamedTuple{K}, A::AbstractDimArray, As...) where K =
(NamedTuple{K}(ntuple(x -> A, length(K))), _as_extended_nts(nt, As...)...)
function _as_extended_nts(nt::NamedTuple{K1}, st::AbstractDimStack{K2}, As...) where {K1,K2}
K1 == K2 || throw(ArgumentError("Keys of stack $K2 do not match the keys of the first stack $K1"))
extended_layers = map(layers(st)) do l
if all(hasdim(l, dims(st)))
l
else
DimExtensionArray(l, dims(st))
end
end
return (extended_layers, _as_extended_nts(nt, As...)...)
end
_as_extended_nts(::NamedTuple) = ()