-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathset.jl
152 lines (128 loc) · 7.59 KB
/
set.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
const DimArrayOrStack = Union{AbstractDimArray,AbstractDimStack}
"""
set(x, val)
set(x, args::Pairs...) => x with updated field/s
set(x, args...; kw...) => x with updated field/s
set(x, args::Tuple{Vararg{Dimension}}; kw...) => x with updated field/s
set(dim::Dimension, index::AbstractArray) => Dimension
set(dim::Dimension, lookup::Lookup) => Dimension
set(dim::Dimension, lookupcomponent::LookupTrait) => Dimension
set(dim::Dimension, metadata::AbstractMetadata) => Dimension
Set the properties of an object, its internal data or the traits of its dimensions
and lookup index.
As DimensionalData is so strongly typed you do not need to specify what field
of a [`Lookup`](@ref) to `set` - there is no ambiguity.
To set fields of a `Lookup` you need to specify the dimension. This can be done
using `X => val` pairs, `X = val` keyword arguments, or `X(val)` wrapped arguments.
You can also set the fields of all dimensions by simply passing a single [`Lookup`](@ref)
or lookup trait - it will be set for all dimensions.
When a `Dimension` or `Lookup` is passed to `set` to replace the
existing ones, fields that are not set will keep their original values.
## Notes:
Changing a lookup index range/vector will also update the step size and order where applicable.
Setting the [`Order`](@ref) like `ForwardOrdered` will *not* reverse the array or
dimension to match. Use `reverse` and [`reorder`](@ref) to do this.
## Examples
```jldoctest set
julia> using DimensionalData; const DD = DimensionalData;
julia> da = DimArray(zeros(3, 4), (custom=10.0:010.0:30.0, Z=-20:010.0:10.0));
julia> set(da, ones(3, 4))
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
↓ custom Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Regular Points,
→ Z Sampled{Float64} -20.0:10.0:10.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────────┘
↓ → -20.0 -10.0 0.0 10.0
10.0 1.0 1.0 1.0 1.0
20.0 1.0 1.0 1.0 1.0
30.0 1.0 1.0 1.0 1.0
```
Change the `Dimension` wrapper type:
```jldoctest set
julia> set(da, :Z => Ti, :custom => Z)
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────── dims ┐
↓ Z Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Regular Points,
→ Ti Sampled{Float64} -20.0:10.0:10.0 ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────┘
↓ → -20.0 -10.0 0.0 10.0
10.0 0.0 0.0 0.0 0.0
20.0 0.0 0.0 0.0 0.0
30.0 0.0 0.0 0.0 0.0
```
Change the lookup `Vector`:
```jldoctest set
julia> set(da, Z => [:a, :b, :c, :d], :custom => [4, 5, 6])
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
↓ custom Sampled{Int64} [4, 5, 6] ForwardOrdered Regular Points,
→ Z Sampled{Symbol} [:a, :b, :c, :d] ForwardOrdered Regular Points
└─────────────────────────────────────────────────────────────────────────┘
↓ → :a :b :c :d
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
```
Change the `Lookup` type:
```jldoctest set
julia> set(da, Z=DD.NoLookup(), custom=DD.Sampled())
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴───────────────────────────────────────── dims ┐
↓ custom Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Regular Points,
→ Z
└─────────────────────────────────────────────────────────────────────────┘
10.0 0.0 0.0 0.0 0.0
20.0 0.0 0.0 0.0 0.0
30.0 0.0 0.0 0.0 0.0
```
Change the `Sampling` trait:
```jldoctest set
julia> set(da, :custom => DD.Irregular(10, 12), Z => DD.Regular(9.9))
╭─────────────────────────╮
│ 3×4 DimArray{Float64,2} │
├─────────────────────────┴─────────────────────────────────────────── dims ┐
↓ custom Sampled{Float64} 10.0:10.0:30.0 ForwardOrdered Irregular Points,
→ Z Sampled{Float64} -20.0:10.0:10.0 ForwardOrdered Regular Points
└───────────────────────────────────────────────────────────────────────────┘
↓ → -20.0 -10.0 0.0 10.0
10.0 0.0 0.0 0.0 0.0
20.0 0.0 0.0 0.0 0.0
30.0 0.0 0.0 0.0 0.0
```
"""
function set end
# Types are constructed
Base.@assume_effects :effect_free set(x::DimArrayOrStack, ::Type{T}) where T = set(x, T())
# Dimensions and pairs are set for dimensions
Base.@assume_effects :effect_free set(A::DimArrayOrStack, args::Union{Dimension,DimTuple,Pair}...; kw...) =
rebuild(A, data(A), set(dims(A), args...; kw...))
# Single traits are set for all dimensions
Base.@assume_effects :effect_free set(A::DimArrayOrStack, x::LookupTrait) =
set(A, map(d -> basedims(d) => x, dims(A))...)
# Single lookups are set for all dimensions
Base.@assume_effects :effect_free set(A::AbstractDimArray, x::Lookup) =
set(A, map(d -> basedims(d) => x, dims(A))...)
Base.@assume_effects :effect_free set(A::AbstractDimStack, x::Lookup) =
set(A, map(d -> basedims(d) => x, dims(A))...)
# Arrays are set as data for AbstractDimArray
Base.@assume_effects :effect_free set(A::AbstractDimArray, newdata::AbstractArray) = begin
axes(A) == axes(newdata) || _axiserr(A, newdata)
rebuild(A; data=newdata)
end
# NamedTuples are set as data for AbstractDimStack
Base.@assume_effects :effect_free set(s::AbstractDimStack, newdata::NamedTuple) = begin
dat = data(s)
keys(dat) === keys(newdata) || _keyerr(keys(dat), keys(newdata))
map(dat, newdata) do d, nd
axes(d) == axes(nd) || _axiserr(d, nd)
end
rebuild(s; data=newdata)
end
# Other things error
Base.@assume_effects :effect_free set(A, x) = Lookups._cantseterror(A, x)
@noinline _axiserr(a, b) = throw(ArgumentError("passed in axes $(axes(b)) do not match the currect axes $(axes(a))"))
@noinline _keyerr(ka, kb) = throw(ArgumentError("keys $ka and $kb do not match"))