-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinferM.py
134 lines (120 loc) · 4.76 KB
/
inferM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pandas as pd
import numpy as np
#from sklearn import metrics
import cv2,keras,time,os,gc,argparse
from data import DataGeneratorM
from utils import find_best_dice
from data import preprocess_input
from models import build_model
def img2arr(test,size=224):
N=test.shape[0]
XRGB = np.zeros((N, size, size, 1), dtype=np.float32)
j=0
for i in range(0,N):
p = test.maskpath.values[i]
mask=cv2.imread(p,0)
mask = cv2.resize(mask, (size, size), cv2.INTER_CUBIC)
XRGB[i, :, :, :] = mask.reshape(size,size,1)/255.
return XRGB
def fillHole(im_in):
im_floodfill = im_in.copy()
# Mask used to flood filling.
# Notice the size needs to be 2 pixels than the image.
h, w = im_in.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
# Floodfill from point (0, 0)
cv2.floodFill(im_floodfill, mask, (0, 0), 255)
# Invert floodfilled image
im_floodfill_inv = cv2.bitwise_not(im_floodfill)
# Combine the two images to get the foreground.
#im_out = im_in | im_floodfill_inv
return im_floodfill_inv
def get_args():
parser = argparse.ArgumentParser(description="net .", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--net", "-net",type=str, help=" net type",default='U2netS')
#parser.add_argument("--batch_size","-batch_size", type=int, default=2, help="batch size")
parser.add_argument("--output","-o", type=int, default=0, help="0-只评估dice,1-输出test结果")
parser.add_argument("--size", "-size", type=int, default=288, help=" image size")
parser.add_argument('--pretrained',"-p",type=str,default=None,help=' pretrained model weights h5 file')
args = parser.parse_args()
return args
if __name__ == '__main__':
if os.path.exists('result')==False:
os.makedirs('result')
parsers = get_args()
size = parsers.size
net = parsers.net
o=parsers.output
d=pd.read_csv('data/gastric.csv')
#size=288
#train_gen=DataGeneratorC(data=d[d.type=='train'],batch_size=batch_size,size=size,au=True)
val=d[d.type=='test']
val=val[val.label==1]
masks=img2arr(val,size=size)
#val_gen=DataGeneratorM(data=val,batch_size=2,size=size,shuffle=False)
model = build_model(size=size, net=net)
mask_num = len(model.outputs)
if parsers.pretrained is not None:
model.load_weights(parsers.pretrained)
val_gen = DataGeneratorM(data=val, batch_size=2, size=size, shuffle=False, mask_num=mask_num)
if mask_num==1:
#pred = model.predict(val_gen, verbose=1)
infer_model=model
else:
infer_model = keras.models.Model(model.inputs, model.outputs[0])
infer_model.summary()
pred = infer_model.predict(val_gen, verbose=1)
score,alpha=find_best_dice(masks, pred,step=0.001)
del(masks,pred)
test=pd.read_csv('data/gastric_test.csv')
nn=test.shape[0]
if o>0:
sub = 'result/%s_%s_'%(net,size) + time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime(time.time()))
if os.path.exists(sub) == False:
os.makedirs(sub)
cost_time=[]
for i in range(0,nn):
path=test.filepath[i]
fp = test.filename[i].split('.')[0]
t0=time.time()
image=cv2.imread(path)
w, h = image.shape[:2]
image = cv2.resize(image, (size, size), cv2.INTER_CUBIC)
image = image[:, :, ::-1]
image = preprocess_input(image).reshape(1, size, size, 3)
pred=infer_model(image)
pred=pred.numpy().reshape(size,size)
print( '==> ',i,fp,pred.mean())
pred[pred>=alpha]=1.
pred[pred< alpha]=0
pred=pred*255.
pred=pred.astype(np.uint8)
#mask=cv2.erode(pred,(7,7))
mask=cv2.resize(pred,(h,w),cv2.INTER_CUBIC)
mask[mask>0]=255
cost_time.append(time.time()-t0)
cv2.imwrite(sub+'/'+fp+'_mask.jpg',mask)
del(mask,image,pred)
gc.collect()
print(' avg cost time :%.6f'%np.array(cost_time).mean() )
'''
sample=test[test.label==1].iloc[0].to_dict()
image=cv2.imread(sample['filepath'])
mask = cv2.imread(sample['maskpath'], 0)
w,h=mask.shape
image = cv2.resize(image, (size, size), cv2.INTER_CUBIC)
mask = cv2.resize(mask, (size, size), cv2.INTER_CUBIC)
mask2=cv2.resize(mask, (h, w), cv2.INTER_CUBIC)
dice_np(masks,pred,a=0.1)
image=preprocess_input(image).reshape(1,size,size,3)
pred=model.predict(image,verbose=1)
for i in range(0,6):
pr=pred[i]
tmp=pr.reshape(size,size)
m=tmp.mean()
tmp[tmp>=m]=1.
print(i,m)
tmp=255*tmp
tmp=tmp.astype(np.uint8)
cv2.imwrite('%02d.png' %i,tmp)
'''