-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.rs
577 lines (486 loc) · 19.2 KB
/
setup.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
//! Booster hardware setup and configuration routines.
use embedded_hal_bus::i2c::AtomicDevice;
use super::{
booster_channels::BoosterChannels,
chassis_fans::ChassisFans,
delay::AsmDelay,
flash::Flash,
metadata::ApplicationMetadata,
net_interface, platform,
rf_channel::{AdcPin, ChannelPins as RfChannelPins},
usb,
user_interface::{UserButtons, UserLeds},
Channel, HardwareVersion, Mac, NetworkStack, SerialTerminal, SystemTimer, Systick, UsbBus,
CPU_FREQ, I2C,
};
use stm32f4xx_hal::hal::delay::DelayNs;
use crate::settings::eeprom::main_board::BoosterMainBoardData;
use stm32f4xx_hal as hal;
use bit_field::BitField;
use core::convert::TryInto;
use core::fmt::Write;
use hal::prelude::*;
use heapless::String;
use rand_core::RngCore;
use usb_device::prelude::*;
/// Macro for genering an RfChannelPins structure.
///
/// # Args
/// * `gpiod` - The GPIOD Parts structure to extract pins from.
/// * `gpioe` - The GPIOE Parts structure to extract pins from.
/// * `gpiog` - The GPIOG Parts structure to extract pins from.
/// * `enable` - The pin ID of the enable pin in GPIOD.
/// * `alert` - The pin ID of the alert pin in GPIOD.
/// * `reflected_overdrive` - The pin ID of the input overdrive pin in GPIOE.
/// * `output_overdrive` - The pin ID of the output overdrive pin in GPIOE.
/// * `signal_on` - The pin ID of the signal on pin in GPIOG.
/// * `gpioa` - The GPIO port used to instantiate analog pins.
/// * `tx_power` - The name of the pin to instantiate for the TX power measurement.
/// * `reflected_power` - The name of the pin to instantiate for the reflected power measurement.
///
/// # Returns
/// An option containing the RfChannelPins structure.
macro_rules! channel_pins {
($gpiod:ident, $gpioe:ident, $gpiog:ident, $enable:ident, $alert:ident, $reflected_overdrive:ident,
$output_overdrive:ident, $signal_on:ident, $gpioa:ident, $tx_power:ident, $reflected_power:ident) => {{
let enable_power = $gpiod.$enable.into_push_pull_output().erase();
let alert = $gpiod.$alert.into_floating_input().erase();
let reflected_overdrive = $gpioe.$reflected_overdrive.into_floating_input().erase();
let output_overdrive = $gpioe.$output_overdrive.into_pull_down_input().erase();
let signal_on = $gpiog.$signal_on.into_push_pull_output().erase();
let tx_power = AdcPin::$tx_power($gpioa.$tx_power.into_analog());
let reflected_power = AdcPin::$reflected_power($gpioa.$reflected_power.into_analog());
RfChannelPins::new(
enable_power,
alert,
reflected_overdrive,
output_overdrive,
signal_on,
tx_power,
reflected_power,
)
}};
}
/// Container method for all devices on the main I2C bus.
pub struct MainBus {
pub channels: BoosterChannels,
pub fans: ChassisFans,
}
/// Configured Booster hardware devices.
pub struct BoosterDevices {
pub leds: UserLeds,
pub buttons: UserButtons,
pub main_bus: MainBus,
pub network_stack: NetworkStack,
pub watchdog: hal::watchdog::IndependentWatchdog,
pub usb_device: usb::UsbDevice,
pub usb_serial: SerialTerminal,
pub settings: crate::settings::Settings,
pub metadata: &'static ApplicationMetadata,
}
/// Configure Booster hardware peripherals and RF channels.
///
/// # Note
/// It is only acceptable to call this function once per boot.
///
/// # Args
/// * `core` - The RTIC core peripherals
/// * `device` - The RTIC STM32 device peripherals.
///
/// # Returns
/// The configured [BoosterDevices].
pub fn setup(
mut core: rtic::export::Peripherals,
device: stm32f4xx_hal::pac::Peripherals,
clock: SystemTimer,
) -> BoosterDevices {
// Configure RTT logging.
device.DBGMCU.cr().modify(|_, w| w.dbg_sleep().set_bit());
rtt_target::rtt_init_print!();
// Install the logger
log::set_logger(&crate::LOGGER)
.map(|()| log::set_max_level(log::LevelFilter::Info))
.unwrap();
log::info!("Starting initialization");
if platform::dfu_bootflag() {
platform::execute_system_bootloader();
}
core.DWT.enable_cycle_counter();
core.DCB.enable_trace();
// Initialize the chip
let rcc = device.RCC.constrain();
// Note: CPU frequency is currently set to maximum, but it could potentially be lowered if
// needed.
let clocks = rcc
.cfgr
.use_hse(8.MHz())
.sysclk(168.MHz())
.hclk(CPU_FREQ.Hz())
.pclk1(42.MHz())
.require_pll48clk()
.freeze();
Systick::start(core.SYST, clocks.sysclk().to_Hz());
// Start the watchdog during the initialization process.
let mut watchdog = hal::watchdog::IndependentWatchdog::new(device.IWDG);
watchdog.start(30.secs());
let mut delay = AsmDelay::new(clocks.sysclk().to_Hz());
let gpioa = device.GPIOA.split();
let gpiob = device.GPIOB.split();
let gpioc = device.GPIOC.split();
let gpiod = device.GPIOD.split();
let gpioe = device.GPIOE.split();
let gpiof = device.GPIOF.split();
let gpiog = device.GPIOG.split();
let mut pa_ch_reset_n = gpiob.pb9.into_push_pull_output();
pa_ch_reset_n.set_high();
// Manually reset all of the I2C buses across the RF channels using a bit-bang reset.
let mut i2c_mux_reset = gpiob.pb14.into_push_pull_output();
let i2c_bus_manager: &'static _ = {
let mut mux = {
let i2c = {
hal::i2c::I2c::new(
device.I2C1,
(
gpiob.pb6.into_alternate_open_drain(),
gpiob.pb7.into_alternate_open_drain(),
),
100.kHz(),
&clocks,
)
};
tca9548::Tca9548::default(i2c, &mut i2c_mux_reset, &mut delay).unwrap()
};
mux.enable(0xFF).unwrap();
let (i2c_peripheral, pins) = mux.free().release();
let (scl, sda) = pins;
let mut scl: hal::gpio::PB6<hal::gpio::Output<hal::gpio::OpenDrain>> =
scl.try_into().unwrap();
let mut sda: hal::gpio::PB7<hal::gpio::Output<hal::gpio::OpenDrain>> =
sda.try_into().unwrap();
platform::i2c_bus_reset(&mut sda, &mut scl, &mut delay);
let i2c = {
hal::i2c::I2c::new(
i2c_peripheral,
(
scl.into_alternate_open_drain(),
sda.into_alternate_open_drain(),
),
100.kHz(),
&clocks,
)
};
cortex_m::singleton!(:embedded_hal_bus::util::AtomicCell<I2C> = embedded_hal_bus::util::AtomicCell::new(i2c))
.unwrap()
};
// Instantiate the I2C interface to the I2C mux. Use a shared-bus so we can share the I2C
// bus with all of the Booster peripheral devices.
let mut channels = {
let pins = [
channel_pins!(gpiod, gpioe, gpiog, pd0, pd8, pe8, pe0, pg8, gpioa, pa0, pa1),
channel_pins!(gpiod, gpioe, gpiog, pd1, pd9, pe9, pe1, pg9, gpioa, pa2, pa3),
channel_pins!(gpiod, gpioe, gpiog, pd2, pd10, pe10, pe2, pg10, gpiof, pf6, pf7),
channel_pins!(gpiod, gpioe, gpiog, pd3, pd11, pe11, pe3, pg11, gpiof, pf8, pf9),
channel_pins!(gpiod, gpioe, gpiog, pd4, pd12, pe12, pe4, pg12, gpiof, pf10, pf3),
channel_pins!(gpiod, gpioe, gpiog, pd5, pd13, pe13, pe5, pg13, gpioc, pc0, pc1),
channel_pins!(gpiod, gpioe, gpiog, pd6, pd14, pe14, pe6, pg14, gpioc, pc2, pc3),
channel_pins!(gpiod, gpioe, gpiog, pd7, pd15, pe15, pe7, pg15, gpiof, pf4, pf5),
];
let mut mux = {
tca9548::Tca9548::default(
AtomicDevice::new(i2c_bus_manager),
&mut i2c_mux_reset,
&mut delay,
)
.unwrap()
};
// Test scanning and reading back MUX channels.
assert!(mux.self_test().unwrap());
let config = hal::adc::config::AdcConfig::default().reference_voltage(2500);
let adc = hal::adc::Adc::adc3(device.ADC3, true, config);
BoosterChannels::new(mux, adc, i2c_bus_manager, pins, clock, delay.clone())
};
let buttons = {
let button1 = gpiof.pf14.into_floating_input();
let button2 = gpiof.pf15.into_floating_input();
UserButtons::new(button1, button2)
};
let leds = {
let spi = {
let mode = hal::spi::Mode {
polarity: hal::spi::Polarity::IdleLow,
phase: hal::spi::Phase::CaptureOnFirstTransition,
};
hal::spi::Spi::new(
device.SPI2,
(
gpiob.pb13.into_alternate(),
hal::spi::NoMosi::new(),
gpiob.pb15.into_alternate(),
),
mode,
10.MHz(),
&clocks,
)
};
let csn = gpiob.pb12.into_push_pull_output();
let oen = gpiob.pb8.into_push_pull_output();
UserLeds::new(spi, csn, oen)
};
let mut eeprom = {
let i2c2 = {
// Manually reset the I2C bus
let mut scl = gpiob.pb10.into_open_drain_output();
let mut sda = gpiob.pb11.into_open_drain_output();
platform::i2c_bus_reset(&mut sda, &mut scl, &mut delay);
hal::i2c::I2c::new(
device.I2C2,
(
scl.into_alternate_open_drain(),
sda.into_alternate_open_drain(),
),
100.kHz(),
&clocks,
)
};
microchip_24aa02e48::Microchip24AA02E48::new(i2c2).unwrap()
};
let mac_address = {
let mut mac: [u8; 6] = [0; 6];
eeprom.read_eui48(&mut mac).unwrap();
mac
};
let mut flash = {
let flash = stm32f4xx_hal::flash::LockedFlash::new(device.FLASH);
const SECTOR_SIZE: usize = 128 * 1024;
const NUM_SECTORS: usize = 8;
// sequential-storage requires 2 flash sectors for storage. We allocate them at the end of
// flash.
Flash::new(flash, (NUM_SECTORS - 2) * SECTOR_SIZE)
};
// Load initial runtime setings from RF channel EEPROM. We'll potentially overwrite these with
// data loaded from flash later.
let mut runtime_settings = crate::settings::runtime_settings::RuntimeSettings::default();
for idx in enum_iterator::all::<Channel>() {
runtime_settings.channel[idx as usize] = channels
.channel_mut(idx)
.map(|(channel, _)| *channel.context().settings())
}
// Load initial main-board settings from EEPROM
let eeprom_settings = BoosterMainBoardData::load(&mut eeprom);
runtime_settings.fan_speed = eeprom_settings.fan_speed;
let mut settings = crate::settings::Settings {
mac: eeprom_settings.mac,
ip: eeprom_settings.ip,
broker: eeprom_settings.broker,
gateway: eeprom_settings.gateway,
id: eeprom_settings.id,
booster: runtime_settings,
};
// Now that we've initialized settings from EEPROM, we'll potentially overwrite them using
// values stored in flash. This helps preserve backwards compatibility with older Booster
// firmware versions that didn't store settings in flash. We no longer persist settings to
// EEPROM, so flash will have the latest and greatest settings data.
crate::settings::flash::SerialSettingsPlatform::load(&mut settings, &mut flash);
let mut mac = {
let mut spi = {
let mode = hal::spi::Mode {
polarity: hal::spi::Polarity::IdleLow,
phase: hal::spi::Phase::CaptureOnFirstTransition,
};
hal::spi::Spi::new(
device.SPI1,
(
gpioa.pa5.into_alternate(),
gpioa.pa6.into_alternate(),
gpioa.pa7.into_alternate(),
),
mode,
14.MHz(),
&clocks,
)
};
let mut cs = {
let mut pin = gpioa.pa4.into_push_pull_output();
pin.set_high();
pin
};
// Attempt to read the W5500 VERSION register. On the W5500, we will get the expected
// version code of 0x04, but the ENC424J600 won't return anything meaningful.
let w5500_detected = {
cs.set_low();
let transfer = [
0x00, 0x39, // Reading the version register (address 0x0039)
0x01, // Control phase, 1 byte of data, common register block, read
0x00, // Data, don't care, will be overwritten during read.
];
let mut result = [0; 4];
spi.transfer(&mut result, &transfer).unwrap();
cs.set_high();
// The result is stored in the data phase byte. This should always be a 0x04 for the
// W5500.
result[3] == 0x04
};
let spi = embedded_hal_bus::spi::ExclusiveDevice::new(spi, cs, delay.clone()).unwrap();
if w5500_detected {
// Reset the W5500.
let mut mac_reset_n = gpiog.pg5.into_push_pull_output();
// Ensure the reset is registered.
mac_reset_n.set_low();
delay.delay_ms(1u32);
mac_reset_n.set_high();
// Wait for the W5500 to achieve PLL lock.
delay.delay_ms(1u32);
let w5500 = w5500::UninitializedDevice::new(w5500::bus::FourWire::new(spi))
.initialize_macraw(w5500::MacAddress {
octets: mac_address,
})
.unwrap();
Mac::W5500(w5500)
} else {
let mut mac = enc424j600::Enc424j600::new(spi);
mac.init(&mut delay).expect("PHY initialization failed");
mac.write_mac_addr(&mac_address).unwrap();
Mac::Enc424j600(mac)
}
};
let metadata = {
// Read the hardware version pins.
let hardware_version = {
let hwrev0 = gpiof.pf0.into_pull_down_input();
let hwrev1 = gpiof.pf1.into_pull_down_input();
let hwrev2 = gpiof.pf2.into_pull_down_input();
HardwareVersion::from(
*0u8.set_bit(0, hwrev0.is_high())
.set_bit(1, hwrev1.is_high())
.set_bit(2, hwrev2.is_high()),
)
};
let phy_string = match mac {
Mac::W5500(_) => "W5500",
Mac::Enc424j600(_) => "Enc424j600",
};
ApplicationMetadata::new(hardware_version, phy_string)
};
let mut rng = device.RNG.constrain(&clocks);
let (interface, sockets) = net_interface::setup(&mut mac, &settings, rng.next_u64());
let mut network_stack = smoltcp_nal::NetworkStack::new(interface, mac, sockets, clock);
let mut seed_bytes = [0; 8];
rng.fill_bytes(&mut seed_bytes);
network_stack.seed_random_port(&seed_bytes);
let mut fans = {
let main_board_leds = {
let mut led1 = gpioc.pc8.into_push_pull_output();
let mut led2 = gpioc.pc9.into_push_pull_output();
let mut led3 = gpioc.pc10.into_push_pull_output();
led1.set_low();
led2.set_low();
led3.set_low();
(led1, led2, led3)
};
let fan1 = max6639::Max6639::new(
AtomicDevice::new(i2c_bus_manager),
max6639::AddressPin::Pulldown,
)
.unwrap();
let fan2 = max6639::Max6639::new(
AtomicDevice::new(i2c_bus_manager),
max6639::AddressPin::Float,
)
.unwrap();
let fan3 = max6639::Max6639::new(
AtomicDevice::new(i2c_bus_manager),
max6639::AddressPin::Pullup,
)
.unwrap();
ChassisFans::new(
[fan1, fan2, fan3],
main_board_leds,
settings.booster.fan_speed,
)
};
assert!(fans.self_test(&mut delay));
// Set up the USB bus.
let (usb_device, usb_serial) = {
// Note(unwrap): The setup function is only safe to call once, so these unwraps should never
// fail.
let endpoint_memory = cortex_m::singleton!(: [u32; 1024] = [0; 1024]).unwrap();
let usb_bus =
cortex_m::singleton!(: Option<usb_device::bus::UsbBusAllocator<UsbBus>> = None)
.unwrap();
let serial_number = cortex_m::singleton!(: Option<String<64>> = None).unwrap();
let usb = hal::otg_fs::USB::new(
(
device.OTG_FS_GLOBAL,
device.OTG_FS_DEVICE,
device.OTG_FS_PWRCLK,
),
(gpioa.pa11.into_alternate(), gpioa.pa12.into_alternate()),
&clocks,
);
usb_bus.replace(hal::otg_fs::UsbBus::new(usb, &mut endpoint_memory[..]));
let read_store = cortex_m::singleton!(: [u8; 128] = [0; 128]).unwrap();
let write_store = cortex_m::singleton!(: [u8; 1024] = [0; 1024]).unwrap();
let usb_serial = usbd_serial::SerialPort::new_with_store(
usb_bus.as_ref().unwrap(),
&mut read_store[..],
&mut write_store[..],
);
// Generate a device serial number from the MAC address.
{
let mut serial_string: String<64> = String::new();
write!(
&mut serial_string,
"{:02x}-{:02x}-{:02x}-{:02x}-{:02x}-{:02x}",
mac_address[0],
mac_address[1],
mac_address[2],
mac_address[3],
mac_address[4],
mac_address[5]
)
.unwrap();
serial_number.replace(serial_string);
}
let usb_device =
// USB VID/PID registered at https://pid.codes/1209/3933/
UsbDeviceBuilder::new(usb_bus.as_ref().unwrap(), UsbVidPid(0x1209, 0x3933))
.strings(&[usb_device::device::StringDescriptors::default()
.manufacturer("ARTIQ/Sinara")
.product("Booster")
.serial_number(serial_number.as_ref().unwrap().as_str())
]).unwrap()
.device_class(usbd_serial::USB_CLASS_CDC)
.build();
(usb::UsbDevice::new(usb_device), usb_serial)
};
let serial_terminal = {
let input_buffer = cortex_m::singleton!(:[u8; 256] = [0u8; 256]).unwrap();
let serialize_buffer = cortex_m::singleton!(:[u8; 512] = [0u8; 512]).unwrap();
serial_settings::Runner::new(
crate::settings::flash::SerialSettingsPlatform {
metadata,
_settings_marker: core::marker::PhantomData,
interface: serial_settings::BestEffortInterface::new(usb_serial),
storage: flash,
},
input_buffer,
serialize_buffer,
&mut settings,
)
.unwrap()
};
info!("Startup complete");
BoosterDevices {
leds,
buttons,
// Note: These devices are within a containing structure because they exist on the same
// shared I2C bus.
main_bus: MainBus { channels, fans },
network_stack,
settings,
usb_device,
usb_serial: serial_terminal,
watchdog,
metadata,
}
}