-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraw_som_reconstruct.py
231 lines (186 loc) · 8.74 KB
/
raw_som_reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
@file raw_som_reconstruct.py
@author Ryan Missel
Handles performing the SOM task on the raw signals rather than reconstructions for comparison
"""
import os
import torch
import pandas
import argparse
import scipy.io as sio
from minisom import MiniSom
from util.plot_functions import *
from util.util_functions import *
""" Arg parsing and Data setup"""
# Arg parsing
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--device', '-g', type=int, default=0, help='which GPU to run on')
parser.add_argument('--batch', '-b', type=int, default=128, help='size of batch')
parser.add_argument('--center', '-c', type=int, default=0, help='size of batch')
parser.add_argument('--mon1', type=str, default='july', help='size of batch')
parser.add_argument('--day1', type=int, default=22, help='size of batch')
parser.add_argument('--ant1', type=str, default="A23", help='size of batch')
parser.add_argument('--mon2', type=str, default='july', help='size of batch')
parser.add_argument('--day2', type=int, default=22, help='size of batch')
parser.add_argument('--ant2', type=str, default="A23", help='size of batch')
parser.add_argument('--som1', type=int, default=2, help='size of batch')
parser.add_argument('--som2', type=int, default=2, help='size of batch')
args = parser.parse_args()
# Check whether the days are a cross or not
if '{}{}{}'.format(args.mon1, args.day1, args.ant1) != '{}{}{}'.format(args.mon2, args.day2, args.ant2):
cross = True
print("Crossed")
else:
cross = False
# Which model is used - DAE or VAE
modeltype = 'vae'
# Build checkpt and data paths
checkpt = '{}{}{}'.format(args.mon1, args.day1, args.ant1)
checkpath = checkpt.split('/')[-1].split('.')[0]
dataset = '{}{}/{}'.format(args.mon2, args.day2, args.ant2)
datapath = dataset.split('/')[0]
print(checkpath, datapath)
# Build antenna title if there is a split
if len(args.ant2[1:]) > 1:
antenna_string = f"A{args.ant2[1]} Split {args.ant2[2:]}"
else:
antenna_string = args.ant1
# Build SOM Shape
som_shape = (args.som1, args.som2)
# Set seed if given
np.random.seed(123234)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(args.device)
# Load in the given dataset
if args.center == 0:
dataset = np.load("data/{}.npy".format(dataset), allow_pickle=True)
else:
dataset = np.load("data/{}center.npy".format(dataset), allow_pickle=True)
# Get the centered window of the signal
dataset = get_window(dataset)
# Full path for graph output
if cross is True:
fullpath = 'graphs/- {}_{}/raw_{}_{}/'.format(checkpath, datapath, som_shape[0], som_shape[1], modeltype)
else:
fullpath = 'graphs/- {}/raw_{}_{}/'.format(checkpath, som_shape[0], som_shape[1], modeltype)
print(f"=>Graph output path: {fullpath}")
# Setting up folders for graph saving
if not os.path.exists(fullpath):
os.makedirs(fullpath)
# Save the raw data to the relevant folder
np.save(f"{fullpath}/raw.npy", dataset)
# Train SOM
som = MiniSom(x=som_shape[0], y=som_shape[1], input_len=dataset.shape[1], sigma=0.3,
learning_rate=0.5, random_seed=args.seed)
som.train(dataset, 10000, verbose=False)
# Extract coordinates for each cluster and assignment
winner_coordinates = np.array([som.winner(x) for x in dataset]).T
cluster_index = np.ravel_multi_index(winner_coordinates, som_shape)
# Get maxes across clusters
maxes = get_maxes(dataset, cluster_index, som_shape)
resort = list(np.array(maxes).argsort()[::-1])
# Remap to sort via peak height
map_dict = {float(k): float(v) for k, v in zip(resort, range(som_shape[0] * som_shape[1]))}
cluster_index = vector_map(cluster_index, map_dict)
cluster_index = cluster_index.astype(np.int64)
# Save cluster IDs to file
np.savetxt('{}/clusterIDs.csv'.format(fullpath), cluster_index + 1, delimiter=',')
""" Plotting """
if not os.path.exists('{}/examples/'.format(fullpath)):
os.mkdir('{}/examples/'.format(fullpath))
# Gets statistics to be used in multiple plots
shapes, indices, xs, ys, (maxes, maxes_std), (argmaxes, argmaxes_std), (widths, widths_std), (skews, skews_std), (mses, mses_std) \
= cluster_statistics(fullpath, som_shape, dataset, dataset, cluster_index, save=True)
combined = np.array([maxes, maxes_std, argmaxes, argmaxes_std, widths, widths_std, skews, skews_std, mses, mses_std]).T
df = pandas.DataFrame(np.array([['total'] + [i for i in range(som_shape[0] * som_shape[1])],
maxes, maxes_std, argmaxes, argmaxes_std, widths, widths_std,
skews, skews_std, mses, mses_std]).T,
columns=['cluster', 'maxes', 'maxes_std', 'argmaxes', 'argmaxes_std',
'widths', 'widths_std', 'skews', 'skews_std', 'mses', 'mses_std'])
df.to_csv('{}/som{}{}_cluster_values.csv'.format(fullpath, som_shape[0], som_shape[1]))
# Extract stats to latex table
metrics = [
['peak loc', argmaxes, argmaxes_std],
['peak height', maxes, maxes_std],
['peak width', widths, widths_std],
['peak skew', skews, skews_std],
['MSE', mses, mses_std]
]
f = open("{}/statistics_as_latex.txt".format(fullpath), 'w')
f.write(checkpath + "\n")
f.write("\\begin{table*}\n")
f.write("\t \\centering\n")
f.write("\t \\caption{SOM Clustering for " + f"{args.mon1.title()} {args.day1} " + "with Antenna " + f"{antenna_string}" + ".}\n")
f.write("\t \\label{tab:[]}\n")
f.write("\t \\begin{tabular}{llllll}\n")
f.write("\t \t \\hline\n")
f.write("\t \t Cluster \\#& 0 & 1 & 2 & 3 & 4 \\\\ \n")
f.write("\t \t \\hline \n")
f.write("\t \t \\# pulses & {} & {} & {} & {} & {} \\\\ \n".format(shapes[0][0], shapes[1][0],
shapes[2][0], shapes[3][0], shapes[4][0]))
for cidx, pulses in zip(range(1 + (som_shape[0] * som_shape[1])), shapes):
num_pulses = pulses[0]
peak_loc_mean, peak_loc_std = metrics[0][1][cidx], metrics[0][2][cidx]
peak_height_mean, peak_height_std = metrics[1][1][cidx], metrics[1][2][cidx]
peak_width_mean, peak_width_std = metrics[2][1][cidx], metrics[2][2][cidx]
peak_skew_mean, peak_skew_std = metrics[3][1][cidx], metrics[3][2][cidx]
mse_mean, mse_std = metrics[4][1][cidx], metrics[4][2][cidx]
f.write(
"\t \t {} & {} & ${:0.2f} \\pm {:0.2f}$ & ${:0.2f} \\pm {:0.2f}$ & ${:0.2f} \\pm {:0.2f}$ & ${:0.2f} \\pm {:0.2f}$ & ${:0.5f} \\pm {:0.5f}$ \\\\ \n"
.format(cidx, num_pulses, peak_loc_mean, peak_loc_std, peak_height_mean,peak_height_std,
peak_width_mean, peak_width_std, peak_skew_mean, peak_skew_std, mse_mean, mse_std)
)
f.write("\t \t \\hline \n")
f.write("\t \\end{tabular} \n")
f.write("\end{table*} \n")
# Save each cluster index to separate file
sets = dict()
sets['raw'] = dataset
sets['reconstructions'] = dataset
for i, idxs in enumerate(indices):
sets['cluster{}indices'.format(i)] = idxs
sio.savemat('{}/{}.mat'.format(fullpath, checkpath), sets)
""" Plotting """
if not os.path.exists('{}/examples/'.format(fullpath)):
os.mkdir('{}/examples/'.format(fullpath))
# Plot one reconstruction example per cluster
for _ in range(3):
for clus in range(som_shape[0] * som_shape[1]):
if len(np.where(cluster_index == clus)[0]) == 0:
continue
idxs = np.random.choice(np.where(cluster_index == clus)[0])
signal = dataset[idxs]
reconsig = dataset[idxs]
plt.figure(1)
plt.plot(signal)
plt.plot(reconsig)
plt.legend(('Raw', 'Reconstructed'))
plt.title('Single VAE Reconstruction from Cluster #{} on {} {} {}'.format(clus + 1, args.mon1, args.day1, antenna_string))
plt.savefig('{}/examples/{}signalCluster{}.png'.format(fullpath, idxs, clus + 1))
plt.close()
# Plotting the centroid signals of each node
plot = True
if plot is True:
plot_centroids(fullpath, som, som_shape, dataset, cluster_index)
# Mean plots of each cluster plotted on each other
plot = True
if plot is True:
string = '{} {} {} (Centered)'.format(args.mon2, args.day2, antenna_string)
plot_means(fullpath, som_shape, dataset, dataset, cluster_index, string)
# Mean plots of each cluster plotted on each other *scaled to a common vertical axis*
plot = True
if plot is True:
string = '{} {} {} (Centered)'.format(args.mon2, args.day2, antenna_string)
plot_means(fullpath, som_shape, dataset, dataset, cluster_index, string, vertical_fix=True)
# Plotting the raw and recon mean of each cluster over each other
plot = True
if plot is True:
plot_mean_comparison(fullpath, checkpath, som_shape, dataset, dataset, cluster_index)
# Grid graph of the physical features using colormap
plot = False
if plot is True:
plot_gridgraph(fullpath, som_shape, xs, ys, maxes, argmaxes, widths, skews, mses)