diff --git a/src/qibotn/eval.py b/src/qibotn/eval.py index 39cca9ce..a283ff34 100644 --- a/src/qibotn/eval.py +++ b/src/qibotn/eval.py @@ -9,19 +9,19 @@ from qibotn.mps_contraction_helper import MPSContractionHelper -def eval(qibo_circ, datatype): +def dense_vector_tn(qibo_circ, datatype): myconvertor = QiboCircuitToEinsum(qibo_circ, dtype=datatype) return contract(*myconvertor.state_vector_operands()) -def eval_expectation(qibo_circ, datatype): +def expectation_tn(qibo_circ, datatype): myconvertor = QiboCircuitToEinsum(qibo_circ, dtype=datatype) return contract( *myconvertor.expectation_operands(PauliStringGen(qibo_circ.nqubits)) ) -def eval_tn_MPI(qibo_circ, datatype, n_samples=8): +def dense_vector_tn_MPI(qibo_circ, datatype, n_samples=8): """Convert qibo circuit to tensornet (TN) format and perform contraction using multi node and multi GPU through MPI. The conversion is performed by QiboCircuitToEinsum(), after which it goes through 2 steps: pathfinder and execution. The pathfinder looks at user defined number of samples (n_samples) iteratively to select the least costly contraction path. This is sped up with multi thread. @@ -117,7 +117,7 @@ def eval_tn_MPI(qibo_circ, datatype, n_samples=8): return result, rank -def eval_tn_nccl(qibo_circ, datatype, n_samples=8): +def dense_vector_tn_nccl(qibo_circ, datatype, n_samples=8): from mpi4py import MPI # this line initializes MPI import socket from cuquantum import Network @@ -203,7 +203,7 @@ def eval_tn_nccl(qibo_circ, datatype, n_samples=8): return result, rank -def eval_tn_nccl_expectation(qibo_circ, datatype, n_samples=8): +def expectation_tn_nccl(qibo_circ, datatype, n_samples=8): from mpi4py import MPI # this line initializes MPI import socket from cuquantum import Network @@ -290,7 +290,7 @@ def eval_tn_nccl_expectation(qibo_circ, datatype, n_samples=8): return result, rank -def eval_tn_MPI_expectation(qibo_circ, datatype, n_samples=8): +def expectation_tn_MPI(qibo_circ, datatype, n_samples=8): from mpi4py import MPI # this line initializes MPI import socket from cuquantum import Network @@ -369,7 +369,7 @@ def eval_tn_MPI_expectation(qibo_circ, datatype, n_samples=8): return result, rank -def eval_mps(qibo_circ, gate_algo, datatype): +def dense_vector_mps(qibo_circ, gate_algo, datatype): myconvertor = QiboCircuitToMPS(qibo_circ, gate_algo, dtype=datatype) mps_helper = MPSContractionHelper(myconvertor.num_qubits) diff --git a/tests/test_cuquantum_cutensor_backend.py b/tests/test_cuquantum_cutensor_backend.py index 58020742..3de5c17b 100644 --- a/tests/test_cuquantum_cutensor_backend.py +++ b/tests/test_cuquantum_cutensor_backend.py @@ -42,7 +42,7 @@ def test_eval(nqubits: int, dtype="complex128"): # Test Cuquantum cutn_time, result_tn = time( - lambda: qibotn.cutn.eval(qibo_circ, dtype).flatten()) + lambda: qibotn.eval.dense_vector_tn(qibo_circ, dtype).flatten()) assert 1e-2 * qibo_time < cutn_time < 1e2 * qibo_time assert np.allclose( @@ -78,7 +78,7 @@ def test_mps(nqubits: int, dtype="complex128"): }} cutn_time, result_tn = time( - lambda: qibotn.eval.eval_mps(circ_qibo, gate_algo, dtype).flatten()) + lambda: qibotn.eval.dense_vector_mps(circ_qibo, gate_algo, dtype).flatten()) print( f"State vector difference: {abs(result_tn - result_sv_cp).max():0.3e}")