-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
218 lines (175 loc) · 9.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
from os.path import join, basename, dirname, realpath
import sys
import time
from datetime import date, datetime
import math
PROJECT_DIR = dirname(realpath(__file__))
LOGS_PATH = join(PROJECT_DIR, 'checkpoints')
SAMPLES_PATH = join(PROJECT_DIR, 'results', 'saved_samples')
sys.path.append(PROJECT_DIR)
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from lib.config_parser import parse_config
from lib.dataset import CloDataSet
from lib.network import SCALE
from lib.train_eval_funcs import train, test
from lib.utils_io import load_masks, save_model, save_latent_vectors, load_latent_vectors
from lib.utils_model import SampleSquarePoints
from lib.utils_train import adjust_loss_weights
torch.manual_seed(12345)
np.random.seed(12345)
DEVICE = torch.device('cuda')
def main():
args = parse_config()
exp_name = args.name
# NOTE: when using your custom data, modify the following path to where the packed data is stored.
data_root = join(PROJECT_DIR, 'data', 'packed', '{}'.format(args.data_root))
log_dir = join(PROJECT_DIR,'tb_logs/{}/{}'.format(date.today().strftime('%m%d'), exp_name))
ckpt_dir = join(LOGS_PATH, exp_name)
os.makedirs(ckpt_dir, exist_ok=True)
samples_dir_val = join(SAMPLES_PATH, exp_name, 'val')
samples_dir_test = join(SAMPLES_PATH, exp_name, 'test')
os.makedirs(samples_dir_test, exist_ok=True)
os.makedirs(samples_dir_val, exist_ok=True)
flist_uv, valid_idx, uv_coord_map = load_masks(PROJECT_DIR, args.img_size, body_model='smpl')
# build_model
model = SCALE(
input_nc=3,
output_nc_unet=args.pix_feat_dim,
img_size=args.img_size,
hsize=args.hsize,
nf=args.nf,
up_mode=args.up_mode,
use_dropout=bool(args.use_dropout),
pos_encoding=bool(args.pos_encoding),
num_emb_freqs=args.num_emb_freqs,
posemb_incl_input=bool(args.posemb_incl_input),
uv_feat_dim=2
)
print(model)
subpixel_sampler = SampleSquarePoints(npoints=args.npoints,
include_end=bool(args.pq_include_end),
min_val=args.pqmin,
max_val=args.pqmax)
# Below: for historical reason we have a 256D latent code in the network that is shared for all examples of each garment type.
# Since SCALE is a garment-specific model, this latent code is therefore the same for all examples that the model sees,
# and can be safely seen as part of the network parameters.
lat_vecs = torch.nn.Embedding(1, args.latent_size, max_norm=1.0).cuda()
torch.nn.init.normal_(lat_vecs.weight.data, 0.0, 1e-2 / math.sqrt(args.latent_size))
optimizer = torch.optim.Adam(
[
{"params": model.parameters(), "lr": args.lr,},
{"params": lat_vecs.parameters(), "lr": args.lr,},
])
n_epochs = args.epochs
epoch_now = 0
'''
------------ Load checkpoints in case of test or resume training ------------
'''
if args.mode.lower() in ['test', 'resume']:
checkpoints = sorted([fn for fn in os.listdir(ckpt_dir) if fn.endswith('_model.pt')])
latest = join(ckpt_dir, checkpoints[-1])
print('Loading checkpoint {}'.format(basename(latest)))
ckpt_loaded = torch.load(latest)
model.load_state_dict(ckpt_loaded['model_state'])
checkpoints = sorted([fn for fn in os.listdir(ckpt_dir) if fn.endswith('_latent_vecs.pt')])
checkpoint = join(ckpt_dir, checkpoints[-1])
load_latent_vectors(checkpoint, lat_vecs)
if args.mode.lower() == 'resume':
optimizer.load_state_dict(ckpt_loaded['optimizer_state'])
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.to(DEVICE)
epoch_now = ckpt_loaded['epoch'] + 1
print('Resume training from epoch {}'.format(epoch_now))
if args.mode.lower() == 'test':
epoch_idx = ckpt_loaded['epoch']
model.to(DEVICE)
print('Test model with checkpoint at epoch {}'.format(epoch_idx))
'''
------------ Training over or resume from saved checkpoints ------------
'''
if args.mode.lower() in ['train', 'resume']:
train_set = CloDataSet(root_dir=data_root, split='train', sample_spacing=args.data_spacing,
img_size=args.img_size, scan_npoints=args.scan_npoints)
val_set = CloDataSet(root_dir=data_root, split='val', sample_spacing=args.data_spacing,
img_size=args.img_size, scan_npoints=args.scan_npoints)
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
writer = SummaryWriter(log_dir=log_dir)
print("Total: {} training examples, {} val examples. Training started..".format(len(train_set), len(val_set)))
model.to(DEVICE)
start = time.time()
pbar = range(epoch_now, n_epochs)
for epoch_idx in pbar:
wdecay_rgl = adjust_loss_weights(args.w_rgl, epoch_idx, mode='decay', start=args.decay_start, every=args.decay_every)
wrise_normal = adjust_loss_weights(args.w_normal, epoch_idx, mode='rise', start=args.rise_start, every=args.rise_every)
train_stats = train(
model, lat_vecs, DEVICE, train_loader, optimizer,
flist_uv, valid_idx, uv_coord_map,
subpixel_sampler=subpixel_sampler,
w_s2m=args.w_s2m, w_m2s=args.w_m2s, w_rgl=wdecay_rgl,
w_latent_rgl=1.0, w_normal=wrise_normal,
)
if epoch_idx % 100 == 0 or epoch_idx == n_epochs - 1:
ckpt_path = join(ckpt_dir, '{}_epoch{}_model.pt'.format(exp_name, str(epoch_idx).zfill(5)))
save_model(ckpt_path, model, epoch_idx, optimizer=optimizer)
ckpt_path = join(ckpt_dir, '{}_epoch{}_latent_vecs.pt'.format(exp_name, str(epoch_idx).zfill(5)))
save_latent_vectors(ckpt_path, lat_vecs, epoch_idx)
# test on val set every N epochs
if epoch_idx % args.val_every == 0:
dur = (time.time() - start) / (60 * (epoch_idx-epoch_now+1))
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
print('\n{}, Epoch {}, average {:.2f} min / epoch.'.format(dt_string, epoch_idx, dur))
print('Weights s2m: {:.1e}, m2s: {:.1e}, normal: {:.1e}, rgl: {:.1e}'.format(args.w_s2m, args.w_m2s, wrise_normal, wdecay_rgl))
checkpoints = sorted([fn for fn in os.listdir(ckpt_dir) if fn.endswith('_latent_vecs.pt')])
checkpoint = join(ckpt_dir, checkpoints[-1])
load_latent_vectors(checkpoint, lat_vecs)
val_stats = test(model, lat_vecs,
DEVICE, val_loader, epoch_idx,
samples_dir_val,
flist_uv,
valid_idx, uv_coord_map,
subpixel_sampler=subpixel_sampler,
model_name=exp_name,
save_all_results=bool(args.save_all_results),
)
tensorboard_tabs = ['model2scan', 'scan2model', 'normal_loss', 'residual_square', 'latent_reg', 'total_loss']
stats = {'train': train_stats, 'val': val_stats}
for split in ['train', 'val']:
for (tab, stat) in zip(tensorboard_tabs, stats[split]):
writer.add_scalar('{}/{}'.format(tab, split), stat, epoch_idx)
end = time.time()
t_total = (end - start) / 60
print("Training finished, duration: {:.2f} minutes. Now eval on test set..\n".format(t_total))
writer.close()
'''
------------ Test model ------------
'''
test_set = CloDataSet(root_dir=data_root, split='test', sample_spacing=args.data_spacing,
img_size=args.img_size, scan_npoints=args.scan_npoints)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=True, num_workers=4)
print('Eval on test data...')
start = time.time()
test_m2s, test_s2m, test_lnormal, _, _, _ = test(model, lat_vecs, DEVICE, test_loader, epoch_idx,
samples_dir_test,
flist_uv,
valid_idx, uv_coord_map,
mode='test',
subpixel_sampler=subpixel_sampler,
model_name=exp_name,
save_all_results=bool(args.save_all_results),
)
print('\nDuration: {}'.format(time.time() - start))
testset_result = "Test on test set, {} examples, m2s dist: {:.3e}, s2m dist: {:.3e}, Chamfer total: {:.3e}, normal loss: {:.3e}.\n\n".format(len(test_set), test_m2s, test_s2m, test_m2s+test_s2m, test_lnormal)
print(testset_result)
with open(join(PROJECT_DIR, 'results', 'results_log.txt'), 'a+') as fn:
fn.write('{}, n_pq={}, epoch={}\n'.format(args.name, args.npoints, epoch_idx))
fn.write('\t{}'.format(testset_result))
if __name__ == '__main__':
main()