Skip to content

Latest commit

 

History

History
193 lines (144 loc) · 6.27 KB

README.md

File metadata and controls

193 lines (144 loc) · 6.27 KB

Description

- The class imbalance problem of object detector

  • Arising it when there is a significant difference between the number of positive samples (foreground objects) and negative samples (background) in the dataset
  • This can lead to the model being biased towards the majority class and perform poorly on the minority class
  • Class imbalance problem in one-stage detector is more severe than in two-stage detector because it performs dense sampling method that densely traverses and samples the entire image without region proposal process

- Focus loss of RetinaNet

  • Loss function to deal with class imbalance problem in one-stage
  • The form of adding a dynamic scaling factor that changes according to the class to the cross entropy loss
  • Automatically down-weight the contribution of easy examples during learning, and increase the weight on hard examples

- Architecture of RetinaNet

Contents

- Modify RetinaNet code in pytorch-retinanet official repository to build RetinaNet object detector optimized to human detection (fine-tuning the model using CrowdHuman dataset)

- RetinaNet Train/Fine-tune/Validate/Inference/Visualization

  • Inference results of CrowdHuman (left: gt, right: predicted)

Structures of Project Folders

${ROOT}
            |   |-- train.py
            |   |-- csv_validation.py
            |   |-- build_annotations_file.py
            |   |-- ...
            |   |-- class_names
            |   |   |   |-- coco_names_with_head.txt
            |   |   |   |-- coco_names_with_head.csv (Build csv files of class mappings by running python build_class_mapping_file.py)
            |   |-- weights
            |   |   |   |-- coco_resnet_50_map_0_335_state_dict.pt
            |   |-- data
            |   |   |   |-- CrowdHuman
            |   |   |   |   |   |-- CrowdHuman_train01
            |   |   |   |   |   |-- CrowdHuman_train02
            |   |   |   |   |   |-- CrowdHuman_train03
            |   |   |   |   |   |-- CrowdHuman_val
            |   |   |   |   |   |-- CrowdHuman_test
            |   |   |   |   |   |-- annotation_train.odgt
            |   |   |   |   |   |-- annotation_val.odgt
            |   |   |   |   |   |-- train_annotations.csv (Build csv files of annotations by running python build_annotations_file.py)
            |   |   |   |   |   |-- valid_annotations.csv (Build csv files of annotations by running python build_annotations_file.py)
            |   |   |   |-- COCO2017
            |   |   |   |   |   |-- images
            |   |   |   |   |   |-- labels
            |   |   |   |   |   |-- train2017.txt
            |   |   |   |   |   |-- val2017.txt
            |   |   |   |   |   |-- test-dev2017.txt

Build Custom CrowdHuman CSV Dataset

- Downlaod CrowdHuman Dataset

https://www.crowdhuman.org/

https://www.crowdhuman.org/download.html

- Build csv files of class mappings

python build_class_mapping_file.py --class_names_txt ./class_names/coco_names_with_head.txt --class_names_csv ./class_names/coco_names_with_head.csv

- Build csv files of annotations

python build_annotations_file.py --dataset crowd_human

Docker Environments

- Pull docker environment

docker pull qbxlvnf11docker/retinanet_env

- Run docker environment

nvidia-docker run -it --gpus all --name retinanet_env --shm-size=64G -p 8844:8844 -e GRANT_SUDO=yes --user root -v {retinanet_folder}:/workspace/retinanet -w /workspace/retinanet qbxlvnf11docker/retinanet_env bash

How to use

- Train RetinaNet

  • Train COCO
python train.py \
  --dataset coco \
  --coco_path ./data/COCO2017 \
  --depth {18, 34, 50, 101, 152}
  • Train CrowdHuman
python train.py \
  --dataset csv \
  --csv_classes ./class_names/coco_names_with_head.csv \
  --csv_train ./data/CrowdHuman/train_annotations.csv \
  --csv_val ./data/CrowdHuman/valid_annotations.csv \
  --depth {18, 34, 50, 101, 152}
  • Fine-tune CrowdHuman
python train.py \
  --dataset csv \
  --csv_classes ./class_names/coco_names_with_head.csv \
  --csv_train ./data/CrowdHuman/train_annotations.csv \
  --csv_val ./data/CrowdHuman/valid_annotations.csv \
  --start_epoch 0 \
  --depth 50 \
  --model_path ./weights/coco_resnet_50_map_0_335_state_dict.pt

- Validation (mAP)

  • Valid COCO
python coco_validation.py \
  --coco_path ./data/COCO2017 \
  --model_path ./weights/coco_resnet_50_map_0_335_state_dict.pt
  • Valid CrowdHuman
python csv_validation.py \
  --csv_classes ./class_names/coco_names_with_head.csv \
  --csv_val ./data/CrowdHuman/valid_annotations.csv \
  --model_path {pretrained_weights_path}

- Visualization of inference results

  • Visualization COCO
python visualize.py \
  --dataset coco \
  --coco_path ./data/COCO2017 \
  --model ./weights/coco_resnet_50_map_0_335_state_dict.pt
  • Visualization CrowdHuman
python visualize.py \
  --dataset csv \
  --csv_classes ./class_names/coco_names_with_head.csv \
  --csv_val ./data/CrowdHuman/valid_annotations.csv \
  --model_path {pretrained_weights_path}

Download Weights

- Download COCO pretrained weights of RetinaNet (coco_resnet_50_map_0_335_state_dict.pt)

https://github.com/yhenon/pytorch-retinanet

Author