Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update pyhdf-based arrs to be manually tokenized #2886

Merged
merged 3 commits into from
Aug 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 17 additions & 5 deletions satpy/readers/hdf4_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,12 @@
"""Helpers for reading hdf4-based files."""

import logging
import os

import dask.array as da
import numpy as np
import xarray as xr
from dask.base import tokenize
from pyhdf.SD import SD, SDC, SDS

from satpy.readers.file_handlers import BaseFileHandler
Expand All @@ -45,12 +47,22 @@
}


def from_sds(var, *args, **kwargs):
def from_sds(var, src_path, **kwargs):
"""Create a dask array from a SD dataset."""
var.__dict__["dtype"] = np.dtype(HTYPE_TO_DTYPE[var.info()[3]])
shape = var.info()[2]
var_info = var.info()
var.__dict__["dtype"] = np.dtype(HTYPE_TO_DTYPE[var_info[3]])
shape = var_info[2]
var.__dict__["shape"] = shape if isinstance(shape, (tuple, list)) else tuple(shape)
return da.from_array(var, *args, **kwargs)

name = kwargs.pop("name", None)
if name is None:
var_name = var_info[0]
tokenize_args = (os.fspath(src_path), var_name)
if kwargs:
tokenize_args += (kwargs,)
# put variable name in the front for easier dask debugging
name = var_name + "-" + tokenize(*tokenize_args)
return da.from_array(var, name=name, **kwargs)


class HDF4FileHandler(BaseFileHandler):
Expand Down Expand Up @@ -92,7 +104,7 @@ def collect_metadata(self, name, obj):

def _open_xarray_dataset(self, val, chunks=CHUNK_SIZE):
"""Read the band in blocks."""
dask_arr = from_sds(val, chunks=chunks)
dask_arr = from_sds(val, self.filename, chunks=chunks)
attrs = val.attributes()
return xr.DataArray(dask_arr, dims=("y", "x"),
attrs=attrs)
Expand Down
2 changes: 1 addition & 1 deletion satpy/readers/hdfeos_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@ def load_dataset(self, dataset_name, is_category=False):

dataset = self._read_dataset_in_file(dataset_name)
chunks = self._chunks_for_variable(dataset)
dask_arr = from_sds(dataset, chunks=chunks)
dask_arr = from_sds(dataset, self.filename, chunks=chunks)
dims = ("y", "x") if dask_arr.ndim == 2 else None
data = xr.DataArray(dask_arr, dims=dims,
attrs=dataset.attributes())
Expand Down
4 changes: 2 additions & 2 deletions satpy/readers/modis_l1b.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def get_dataset(self, key, info):
var_attrs = subdata.attributes()
uncertainty = self.sd.select(var_name + "_Uncert_Indexes")
chunks = self._chunks_for_variable(subdata)
array = xr.DataArray(from_sds(subdata, chunks=chunks)[band_index, :, :],
array = xr.DataArray(from_sds(subdata, self.filename, chunks=chunks)[band_index, :, :],
dims=["y", "x"]).astype(np.float32)
valid_range = var_attrs["valid_range"]
valid_min = np.float32(valid_range[0])
Expand Down Expand Up @@ -214,7 +214,7 @@ def _mask_uncertain_pixels(self, array, uncertainty, band_index):
if not self._mask_saturated:
return array
uncertainty_chunks = self._chunks_for_variable(uncertainty)
band_uncertainty = from_sds(uncertainty, chunks=uncertainty_chunks)[band_index, :, :]
band_uncertainty = from_sds(uncertainty, self.filename, chunks=uncertainty_chunks)[band_index, :, :]
array = array.where(band_uncertainty < 15)
return array

Expand Down
2 changes: 1 addition & 1 deletion satpy/readers/modis_l2.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ def read_geo_resolution(metadata):
def _select_hdf_dataset(self, hdf_dataset_name, byte_dimension):
"""Load a dataset from HDF-EOS level 2 file."""
dataset = self.sd.select(hdf_dataset_name)
dask_arr = from_sds(dataset, chunks=CHUNK_SIZE)
dask_arr = from_sds(dataset, self.filename, chunks=CHUNK_SIZE)
attrs = dataset.attributes()
dims = ["y", "x"]
if byte_dimension == 0:
Expand Down
Loading