Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

scene.coarsest_area and scene.resample not working on MSG1/MSG2 in satpy 0.29 #2134

Closed
ghansham opened this issue Jun 27, 2022 · 18 comments
Closed

Comments

@ghansham
Copy link

Describe the bug
While resampling the scene to coarsest_area using resampler='native', it fails.
I was trying to generate the ir_sandwich, when I got stuck here.

To Reproduce

from satpy import Scene

scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-20220101075742.422000000Z-NA.nat'])

scn.load(['ir_sandwich'])

scn.resample(scn.coarsest_area(), resampler='native')


Similarly for MSG2 file as well:
MSG2-SEVI-MSG15-0100-NA-20220627094241.407000000Z-NA.nat

These files were downloaded using the python eumdac package.

Expected behavior
It should have resampled without any error

Actual results
Text output of actual results or error messages including full tracebacks if applicable.

In [18]: lscn = scn.resample(scn.coarsest_area(), resampler='native')

ValueError Traceback (most recent call last)
in
----> 1 lscn = scn.resample(scn.coarsest_area(), resampler='native')

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in coarsest_area(self, datasets)
259
260 """
--> 261 return self._compare_areas(datasets=datasets, compare_func=min)
262
263 def min_area(self, datasets=None):

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in _compare_areas(self, datasets, compare_func)
207 if not all(isinstance(x, type(areas[0]))
208 for x in areas[1:]):
--> 209 raise ValueError("Can't compare areas of different types")
210 elif isinstance(areas[0], AreaDefinition):
211 first_crs = areas[0].crs

ValueError: Can't compare areas of different types

In [19]: lscn = scn.resample(scn._datasets['IR_108'].attrs['area'], resampler='native')

ValueError Traceback (most recent call last)
in
----> 1 lscn = scn.resample(scn._datasets['IR_108'].attrs['area'], resampler='native')

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in resample(self, destination, datasets, generate, unload, resampler, reduce_data, **resample_kwargs)
811 new_scn = self.copy(datasets=datasets)
812 self._resampled_scene(new_scn, destination, resampler=resampler,
--> 813 reduce_data=reduce_data, **resample_kwargs)
814
815 # regenerate anything from the wishlist that needs it (combining

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in _resampled_scene(self, new_scn, destination_area, reduce_data, **resample_kwargs)
771 kwargs = resample_kwargs.copy()
772 kwargs['resampler'] = resamplers[source_area]
--> 773 res = resample_dataset(dataset, destination_area, **kwargs)
774 new_datasets[ds_id] = res
775 if ds_id in new_scn._datasets:

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample_dataset(dataset, destination_area, **kwargs)
1380
1381 fill_value = kwargs.pop('fill_value', get_fill_value(dataset))
-> 1382 new_data = resample(source_area, dataset, destination_area, fill_value=fill_value, **kwargs)
1383 new_attrs = new_data.attrs
1384 new_data.attrs = dataset.attrs.copy()

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(source_area, data, destination_area, resampler, **kwargs)
1343 res = [resampler_instance.resample(ds, **kwargs) for ds in data]
1344 else:
-> 1345 res = resampler_instance.resample(data, **kwargs)
1346
1347 return res

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(self, data, cache_dir, mask_area, **kwargs)
959 cache_dir=cache_dir,
960 mask_area=mask_area,
--> 961 **kwargs)
962
963 @staticmethod

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(self, data, cache_dir, mask_area, **kwargs)
431
432 cache_id = self.precompute(cache_dir=cache_dir, **kwargs)
--> 433 return self.compute(data, cache_id=cache_id, **kwargs)
434
435 def _create_cache_filename(self, cache_dir=None, prefix='',

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in compute(self, data, expand, **kwargs)
1046 repeats[x_axis] = x_repeats
1047
-> 1048 d_arr = self.expand_reduce(data.data, repeats)
1049 new_data = xr.DataArray(d_arr, dims=data.dims)
1050 return update_resampled_coords(data, new_data, target_geo_def)

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in expand_reduce(cls, d_arr, repeats)
1012 y_size = 1. / repeats[0]
1013 x_size = 1. / repeats[1]
-> 1014 return cls.aggregate(d_arr, y_size, x_size)
1015 else:
1016 raise ValueError("Must either expand or reduce in both "

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in aggregate(d, y_size, x_size)
970 "more than 2 dimensions.")
971 if not (x_size.is_integer() and y_size.is_integer()):
--> 972 raise ValueError("Aggregation factors are not integers")
973 for agg_size, chunks in zip([y_size, x_size], d.chunks):
974 for chunk_size in chunks:

ValueError: Aggregation factors are not integers

Screenshots
If applicable, add screenshots to help explain your problem.

Environment Info:

  • OS: RHEL 7.4 (Miapo)
  • Satpy Version: 0.29.0
  • PyResample Version: 1.23.0
  • Readers and writers dependencies (when relevant): [run from satpy.utils import check_satpy; check_satpy()]
    Readers
    =======
    abi_l1b: ok
    abi_l1b_scmi: ok
    abi_l2_nc: ok
    acspo: ok
    agri_l1: ok
    ahi_hrit: ok
    ahi_hsd: ok
    ahi_l1b_gridded_bin: ok
    ami_l1b: ok
    amsr2_l1b: ok
    amsr2_l2: ok
    amsr2_l2_gaasp: ok
    ascat_l2_soilmoisture_bufr: cannot find module 'satpy.readers.ascat_l2_soilmoisture_bufr' (('Missing eccodes-python and/or eccodes C-library installation. Use conda to install eccodes.\n Error: ', ModuleNotFoundError("No module named 'eccodes'")))
    avhrr_l1b_aapp: ok
    avhrr_l1b_eps: ok
    avhrr_l1b_gaclac: ok
    avhrr_l1b_hrpt: ok
    avhrr_l1c_eum_gac_fdr_nc: ok
    caliop_l2_cloud: cannot find module 'satpy.readers.caliop_l2_cloud' (cannot import name 'Dataset' from 'satpy.dataset' (/home/rapid/anaconda3/lib/python3.7/site-packages/satpy/dataset/init.py))
    clavrx: ok
    cmsaf-claas2_l2_nc: ok
    electrol_hrit: ok
    fci_l1c_nc: ok
    fci_l2_nc: ok
    generic_image: ok
    geocat: ok
    ghrsst_l3c_sst: cannot find module 'satpy.readers.ghrsst_l3c_sst' (cannot import name 'Dataset' from 'satpy.dataset' (/home/rapid/anaconda3/lib/python3.7/site-packages/satpy/dataset/init.py))
    glm_l2: ok
    goes-imager_hrit: ok
    goes-imager_nc: ok
    gpm_imerg: ok
    grib: ok
    hsaf_grib: ok
    hy2_scat_l2b_h5: ok
    iasi_l2: ok
    iasi_l2_so2_bufr: cannot find module 'satpy.readers.iasi_l2_so2_bufr' (('Missing eccodes-python and/or eccodes C-library installation. Use conda to install eccodes.\n Error: ', ModuleNotFoundError("No module named 'eccodes'")))
    jami_hrit: ok
    li_l2: cannot find module 'satpy.readers.li_l2' (cannot import name 'Dataset' from 'satpy.dataset' (/home/rapid/anaconda3/lib/python3.7/site-packages/satpy/dataset/init.py))
    maia: ok
    mersi2_l1b: ok
    mimicTPW2_comp: ok
    mirs: ok
    modis_l1b: ok
    modis_l2: ok
    msi_safe: ok
    mtsat2-imager_hrit: ok
    mviri_l1b_fiduceo_nc: ok
    nucaps: ok
    nwcsaf-geo: ok
    nwcsaf-msg2013-hdf5: ok
    nwcsaf-pps_nc: ok
    olci_l1b: ok
    olci_l2: ok
    omps_edr: ok
    safe_sar_l2_ocn: ok
    sar-c_safe: ok
    satpy_cf_nc: ok
    scatsat1_l2b: cannot find module 'satpy.readers.scatsat1_l2b' (cannot import name 'Dataset' from 'satpy.dataset' (/home/rapid/anaconda3/lib/python3.7/site-packages/satpy/dataset/init.py))
    seviri_l1b_hrit: ok
    seviri_l1b_icare: ok
    seviri_l1b_native: ok
    seviri_l1b_nc: ok
    seviri_l2_bufr: cannot find module 'satpy.readers.seviri_l2_bufr' (Missing eccodes-python and/or eccodes C-library installation. Use conda to install eccodes)
    seviri_l2_grib: cannot find module 'satpy.readers.seviri_l2_grib' (Missing eccodes-python and/or eccodes C-library installation. Use conda to install eccodes)
    slstr_l1b: ok
    slstr_l2: ok
    smos_l2_wind: ok
    tropomi_l2: ok
    vaisala_gld360: ok
    vii_l1b_nc: ok
    vii_l2_nc: ok
    viirs_compact: ok
    viirs_edr_active_fires: ok
    viirs_edr_flood: ok
    viirs_l1b: ok
    viirs_sdr: ok
    virr_l1b: ok

Writers

/home/rapid/anaconda3/lib/python3.7/site-packages/pyninjotiff/tifffile.py:155: UserWarning: failed to import the optional _tifffile C extension module.
Loading of some compressed images will be slow.
Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/
"failed to import the optional _tifffile C extension module.\n"
awips_tiled: ok
cf: ok
geotiff: ok
mitiff: ok
ninjotiff: ok
simple_image: ok

Extras

cartopy: ok
geoviews: ok

Additional context
Add any other context about the problem here.

@simonrp84
Copy link
Member

Can you try replacing this line:
scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-20220101075742.422000000Z-NA.nat'])
With this:
scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-20220101075742.422000000Z-NA.nat'], reader_kwargs={'fill_disk':True})

The sandwich composite uses the HRV channel, which does not cover the full SEVIRI disk. The extra fill_disk argument to the reader will tell it to pad the HRV image to match the SEVIRI disk and I think that will solve your problem.

@ghansham
Copy link
Author

Still does not seems to work. Switched to satpy 0.36.0.

In [1]: from satpy import Scene

In [2]: scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-20220101075742.422000000Z-NA.nat'], reader_kwargs={'fill_disk':True})
...:

In [3]: scn.load(['ir_sandwich'])
The following datasets were not created and may require resampling to be generated: DataID(name='ir_sandwich')

In [4]: lscn = scn.resample(scn.coarsest_area(), resampler='native')

ValueError Traceback (most recent call last)
in
----> 1 lscn = scn.resample(scn.coarsest_area(), resampler='native')

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in resample(self, destination, datasets, generate, unload, resampler, reduce_data, **resample_kwargs)
811 new_scn = self.copy(datasets=datasets)
812 self._resampled_scene(new_scn, destination, resampler=resampler,
--> 813 reduce_data=reduce_data, **resample_kwargs)
814
815 # regenerate anything from the wishlist that needs it (combining

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in _resampled_scene(self, new_scn, destination_area, reduce_data, **resample_kwargs)
771 kwargs = resample_kwargs.copy()
772 kwargs['resampler'] = resamplers[source_area]
--> 773 res = resample_dataset(dataset, destination_area, **kwargs)
774 new_datasets[ds_id] = res
775 if ds_id in new_scn._datasets:

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample_dataset(dataset, destination_area, **kwargs)
1380
1381 fill_value = kwargs.pop('fill_value', get_fill_value(dataset))
-> 1382 new_data = resample(source_area, dataset, destination_area, fill_value=fill_value, **kwargs)
1383 new_attrs = new_data.attrs
1384 new_data.attrs = dataset.attrs.copy()

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(source_area, data, destination_area, resampler, **kwargs)
1343 res = [resampler_instance.resample(ds, **kwargs) for ds in data]
1344 else:
-> 1345 res = resampler_instance.resample(data, **kwargs)
1346
1347 return res

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(self, data, cache_dir, mask_area, **kwargs)
959 cache_dir=cache_dir,
960 mask_area=mask_area,
--> 961 **kwargs)
962
963 @staticmethod

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(self, data, cache_dir, mask_area, **kwargs)
431
432 cache_id = self.precompute(cache_dir=cache_dir, **kwargs)
--> 433 return self.compute(data, cache_id=cache_id, **kwargs)
434
435 def _create_cache_filename(self, cache_dir=None, prefix='',

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in compute(self, data, expand, **kwargs)
1046 repeats[x_axis] = x_repeats
1047
-> 1048 d_arr = self.expand_reduce(data.data, repeats)
1049 new_data = xr.DataArray(d_arr, dims=data.dims)
1050 return update_resampled_coords(data, new_data, target_geo_def)

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in expand_reduce(cls, d_arr, repeats)
1012 y_size = 1. / repeats[0]
1013 x_size = 1. / repeats[1]
-> 1014 return cls.aggregate(d_arr, y_size, x_size)
1015 else:
1016 raise ValueError("Must either expand or reduce in both "

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in aggregate(d, y_size, x_size)
974 for chunk_size in chunks:
975 if chunk_size % agg_size != 0:
--> 976 raise ValueError("Aggregation requires arrays with "
977 "shapes and chunks divisible by the "
978 "factor")

ValueError: Aggregation requires arrays with shapes and chunks divisible by the factor

Additionally I tried running this:

scn.load(['IR_108', 'HRV'])
In [19]: scn['HRV'].shape
Out[19]: (11136, 11136)

In [20]: scn['IR_108'].shape
Out[20]: (3712, 3712)

scn.to_xarray_dataset()
/home/rapid/anaconda3/lib/python3.7/site-packages/xarray/core/indexing.py:1232: PerformanceWarning: Slicing is producing a large chunk. To accept the large
chunk and silence this warning, set the option
>>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):
... array[indexer]

To avoid creating the large chunks, set the option
>>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):
... array[indexer]
value = value[(slice(None),) * axis + (subkey,)]
Out[12]:
<xarray.Dataset>
Dimensions: (y: 14847, x: 14847)
Coordinates:

  • y (y) float64 -5.566e+06 -5.566e+06 ... 5.57e+06 5.571e+06
  • x (x) float64 -5.571e+06 -5.57e+06 ... 5.566e+06 5.566e+06
    crs object PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",...
    acq_time (y) datetime64[ns] NaT NaT NaT NaT NaT NaT ... NaT NaT NaT NaT NaT
    Data variables:
    HRV (y, x) float32 dask.array<chunksize=(4949, 869), meta=np.ndarray>
    IR_108 (y, x) float32 dask.array<chunksize=(14847, 14847), meta=np.ndarray>
    Attributes:
    raw_metadata: {'15_MAIN_PRODUCT_HEADER': {'FormatName': {'Nam...
    sensor: seviri
    end_time: 2022-01-01 08:00:10.472158
    platform_name: Meteosat-8
    georef_offset_corrected: True
    modifiers: ()
    start_time: 2022-01-01 07:45:10.420634
    orbital_parameters: {'projection_longitude': 41.5, 'projection_lati...
    ancillary_variables: []

In [15]: scn['IR_108'].data
Out[15]: dask.array<truediv, shape=(3712, 3712), dtype=float32, chunksize=(3712, 3712), chunktype=numpy.ndarray>

In [16]: scn['HRV'].data
Out[16]: dask.array<concatenate, shape=(11136, 11136), dtype=float32, chunksize=(3711, 4386), chunktype=numpy.ndarray>

@djhoese
Copy link
Member

djhoese commented Jun 27, 2022

I wonder if it is the 3711 chunk size of the HRV first dimension. That isn't divisble by 3 ("the factor") and also a little confusing what each chunk must be. For your last line could you do scn['HRV'].data.chunks and show that to us?

@ghansham
Copy link
Author

scn['HRV'].data.chunks
Out[4]: ((3711, 385, 3326, 322, 3392), (820, 1182, 4386, 1182, 2914, 652))

@djhoese
Copy link
Member

djhoese commented Jun 27, 2022

Hacky workaround that may work, right before calling .resample do:

scn['HRV'].data = scn['HRV'].data.rechunk(3712)

Does that fix things?

@ghansham
Copy link
Author

Issue still persists

@djhoese
Copy link
Member

djhoese commented Jun 27, 2022

after you do the above hack, can you print the chunks again? I'm very confused at this point.

@ghansham
Copy link
Author

In [1]: from satpy import Scene
^[[A^[[A
In [2]: scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-
...: 20220101075742.422000000Z-NA.nat'], reader_kwargs={'fill_disk':True})

In [3]: scn.load(['IR_108', 'HRV'])

In [4]: scn["HRV"].data =scn['HRV'].data.rechunk(3712)

In [5]: scn["IR_108"].data.chunks
Out[5]: ((3712,), (3712,))

In [6]: scn["HRV"].data.chunks
Out[6]: ((3712, 3712, 3712), (3712, 3712, 3712))

@ghansham
Copy link
Author

ghansham commented Jun 27, 2022

Python 3.7.6 (default, Jan  8 2020, 19:59:22)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.12.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from satpy import Scene

In [2]: scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-
   ...: 20220101075742.422000000Z-NA.nat'], reader_kwargs={'fill_disk':True})

In [3]: scn.load(['IR_108', 'HRV'])

In [4]: scn["HRV"].data =scn['HRV'].data.rechunk(3712)

In [5]: scn["IR_108"].data.chunks
Out[5]: ((3712,), (3712,))

In [6]: scn["HRV"].data.chunks
Out[6]: ((3712, 3712, 3712), (3712, 3712, 3712))

In [7]: lscn = scn.resample(scn.coarsest_area(), resampler='native')
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-7-a236d3a6c72b> in <module>
----> 1 lscn = scn.resample(scn.coarsest_area(), resampler='native')

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in resample(self, destination, datasets, generate, unload, resampler, reduce_data, **resample_kwargs)
    811         new_scn = self.copy(datasets=datasets)
    812         self._resampled_scene(new_scn, destination, resampler=resampler,
--> 813                               reduce_data=reduce_data, **resample_kwargs)
    814
    815         # regenerate anything from the wishlist that needs it (combining

~/anaconda3/lib/python3.7/site-packages/satpy/scene.py in _resampled_scene(self, new_scn, destination_area, reduce_data, **resample_kwargs)
    771             kwargs = resample_kwargs.copy()
    772             kwargs['resampler'] = resamplers[source_area]
--> 773             res = resample_dataset(dataset, destination_area, **kwargs)
    774             new_datasets[ds_id] = res
    775             if ds_id in new_scn._datasets:

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample_dataset(dataset, destination_area, **kwargs)
   1380
   1381     fill_value = kwargs.pop('fill_value', get_fill_value(dataset))
-> 1382     new_data = resample(source_area, dataset, destination_area, fill_value=fill_value, **kwargs)
   1383     new_attrs = new_data.attrs
   1384     new_data.attrs = dataset.attrs.copy()

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(source_area, data, destination_area, resampler, **kwargs)
   1343         res = [resampler_instance.resample(ds, **kwargs) for ds in data]
   1344     else:
-> 1345         res = resampler_instance.resample(data, **kwargs)
   1346
   1347     return res

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(self, data, cache_dir, mask_area, **kwargs)
    959                                                      cache_dir=cache_dir,
    960                                                      mask_area=mask_area,
--> 961                                                      **kwargs)
    962
    963     @staticmethod

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in resample(self, data, cache_dir, mask_area, **kwargs)
    431
    432         cache_id = self.precompute(cache_dir=cache_dir, **kwargs)
--> 433         return self.compute(data, cache_id=cache_id, **kwargs)
    434
    435     def _create_cache_filename(self, cache_dir=None, prefix='',

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in compute(self, data, expand, **kwargs)
   1046         repeats[x_axis] = x_repeats
   1047
-> 1048         d_arr = self.expand_reduce(data.data, repeats)
   1049         new_data = xr.DataArray(d_arr, dims=data.dims)
   1050         return update_resampled_coords(data, new_data, target_geo_def)

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in expand_reduce(cls, d_arr, repeats)
   1012             y_size = 1. / repeats[0]
   1013             x_size = 1. / repeats[1]
-> 1014             return cls.aggregate(d_arr, y_size, x_size)
   1015         else:
   1016             raise ValueError("Must either expand or reduce in both "

~/anaconda3/lib/python3.7/site-packages/satpy/resample.py in aggregate(d, y_size, x_size)
    974             for chunk_size in chunks:
    975                 if chunk_size % agg_size != 0:
--> 976                     raise ValueError("Aggregation requires arrays with "
    977                                      "shapes and chunks divisible by the "
    978                                      "factor")

ValueError: Aggregation requires arrays with shapes and chunks divisible by the factor

@djhoese
Copy link
Member

djhoese commented Jun 27, 2022

Ah yes, I suppose that does make sense. Oops. You could try a chunk size of 11136 or really anything divisible by 3 I guess, but you'd want an even chunking so maybe 2784 which would give you 4 chunks in each dimension, but is still divisible by 3.

@ghansham
Copy link
Author

I will also try to debug tonight.

@ghansham
Copy link
Author

Following code snippet worked:

from satpy import Scene
scn = Scene(reader='seviri_l1b_native',filenames=['MSG1-SEVI-MSG15-0100-NA-20220101075742.422000000Z-NA.nat'], reader_kwargs={'fill_disk':True})
scn.load(['ir_sandwich'])
scn["HRV"].data = scn['HRV'].data.rechunk(3711)
lscn = scn.resample(destination=scn.coarsest_area(), resampler='native')
lscn.show(dataset_id='ir_sandwich')

Point here is 3712 is not divisible by 3, 3711 is divisible by 3.

@djhoese
Copy link
Member

djhoese commented Jun 28, 2022

I'm not sure we should close this yet. The workaround I gave you is more of a hack. The original use case/code is supposed to work or at least we want it to work. Let's see what some of the SEVIRI experts have to say about this.

@djhoese djhoese reopened this Jun 28, 2022
@ameraner
Copy link
Member

FYI, this is a duplicate of #1595

@strandgren
Copy link
Collaborator

@ghansham Not a solution to the issue, but why do you want to resample onto the coarsest grid? The purpose of the ir_sandwich composite is mainly to exploit the higher spatial resolution of the HRV channel. If you instead use the colorized_ir_clouds composite you should get similar output, but for the full disk and with no need to resample.

@ghansham
Copy link
Author

I feel the products downloaded using the scripts mentioned in the following link:

https://gitlab.eumetsat.int/eumetlab/data-services/eumdac_data_store/-/blob/master/3_Downloading_products.ipynb

have some issues mentioned in this bug (variable chunk size) specifically for high resolution bands

@gerritholl
Copy link
Member

Closing as duplicate of #1595.

@ghansham
Copy link
Author

ghansham commented Oct 11, 2022 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants