-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy patharma.py
74 lines (57 loc) · 2.29 KB
/
arma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os.path as osp
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import ARMAConv
dataset = 'Cora'
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
data = dataset[0]
class Net(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = ARMAConv(in_channels, hidden_channels, num_stacks=3,
num_layers=2, shared_weights=True, dropout=0.25)
self.conv2 = ARMAConv(hidden_channels, out_channels, num_stacks=3,
num_layers=2, shared_weights=True, dropout=0.25,
act=lambda x: x)
def forward(self, x, edge_index):
x = F.dropout(x, training=self.training)
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
if torch.cuda.is_available():
device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
model, data = Net(dataset.num_features, 16,
dataset.num_classes).to(device), data.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
def train():
model.train()
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
def test():
model.eval()
out, accs = model(data.x, data.edge_index), []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = out[mask].argmax(1)
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
return accs
best_val_acc = test_acc = 0
for epoch in range(1, 401):
train()
train_acc, val_acc, tmp_test_acc = test()
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
print(f'Epoch: {epoch:03d}, Train: {train_acc:.4f}, '
f'Val: {best_val_acc:.4f}, Test: {test_acc:.4f}')