-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvislogprob.py
189 lines (144 loc) · 5.73 KB
/
vislogprob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from scipy.stats import normaltest
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import probscale
import base64
import io
import seaborn as sns
sns.set()
def logprob(data):
y = np.sort(data)
x = np.arange(1, len(y)+1)/len(y)
return x, y
def testar_norm(data):
k, p = normaltest(data)
alpha = 0.05
if p < alpha:
# null hypothesis of the test is the data is normally distributed.
# If the p value returned is less than . 05 , then the null hypothesis
# is rejected and there is evidence that the data is not from a normally distributed population
#print("The null hypothesis can be rejected. Data probably not normally distributed.")
return 'doane'
else:
#print("The null hypothesis cannot be rejected. Data probably is normally distributed.")
return 'sturges'
# plt.hist(data)
def classes_frequencias(dados):
dist_type = testar_norm(dados)
classes = np.histogram_bin_edges(dados, bins=dist_type)
#print('número de classes: ' + str(len(classes) - 1))
#print('intervalos: ' + str(classes))
n_classes = len(classes) - 1
lista_classes = []
for i in range(0, n_classes):
lista_classes.append([])
classe = 0
for sample in sorted(dados):
if sample >= classes[classe] and sample < classes[classe + 1]:
lista_classes[classe].append(sample)
# print(str(sample)+' adicionado na classe '+str(classe))
else:
for intervalo in range(0, n_classes):
if sample >= classes[intervalo] and sample <= classes[intervalo + 1]:
# print('avançou da classe '+str(classe)+' para a classe '+str(intervalo))
classe = intervalo
# print(classe)
lista_classes[classe].append(sample)
# print(str(sample)+' adicionado na classe '+str(classe))
counts = []
for classe in range(0, len(lista_classes)):
counts.append(len(lista_classes[classe]))
relative_freq = []
for i in counts:
freq = (i / len(dados)) * 100
relative_freq.append(freq)
intervals_min = []
intervals_max = []
minimum = min(dados)
maximum = max(dados)
Ai = (max(dados) - min(dados)) / n_classes
for i in range(0, n_classes):
intervals_min.append(minimum + i * Ai)
for i in range(1, n_classes):
intervals_max.append(i * Ai)
intervals_max.append(maximum)
return counts, relative_freq, intervals_min, intervals_max
def tabela_frequencias(dados):
freq = pd.DataFrame()
contagem, freq_relativa, intervalos_min, intervalos_max = classes_frequencias(dados)
contagem = np.asarray(contagem)
freq_relativa = np.asarray(freq_relativa)
freq_acumulada = contagem.cumsum()
freq_acum_dir = []
for i in freq_acumulada:
freq_acum_dir.append((i / len(dados)) * 100)
freq_acum_dir = np.asarray(freq_acum_dir)
intervalos_min = np.asarray(intervalos_min)
intervalos_max = np.asarray(intervalos_max)
# print(freq_relativa[::-1])
inverse_freq = []
for i in freq_relativa[::-1]:
inverse_freq.append(i)
freq.insert(loc=0, column='Lower limit', value=intervalos_min)
freq.insert(loc=1, column='Upper limit', value=intervalos_max)
freq.insert(loc=2, column='Lower limit (log)', value=np.log10(intervalos_min))
freq.insert(loc=3, column='Absolut Frequency', value=contagem)
freq.insert(loc=4, column='Relative Frequency (%)', value=freq_relativa)
freq.insert(loc=5, column='Count', value=freq_acumulada)
freq.insert(loc=6, column='Direct Cumulative Frequency (%)', value=freq_acum_dir)
return freq
def clustered_df(X, n_clusters):
model = KMeans(n_clusters=n_clusters, random_state=3425)
model.fit(X)
labels = model.predict(X)
df_clustered = pd.DataFrame()
df_clustered.insert(0, 'Relative Frequency (%)', X[:,0][::-1]*100)
df_clustered.insert(1, 'Value', X[:,1])
df_clustered.insert(2, 'Class', labels)
means = []
for classe in df_clustered.Class.unique():
mean = np.mean(df_clustered.Value[df_clustered.Class == classe])
means.append(mean)
classes_zip = zip(df_clustered.Class.unique(), means)
classes_zip = list(classes_zip)
classes_zip = sorted(classes_zip, key=lambda x: x[1], reverse=True)
anomalous = classes_zip[0][0]
ordem = 1
for n in classes_zip:
if n[0] == anomalous:
df_clustered.Class = df_clustered.Class.apply(lambda row: 'Anomalous Sample'
if row == anomalous
else row)
else:
df_clustered.Class = df_clustered.Class.apply(
lambda row: str(ordem)+'º Order Background Sample'
if row == n[0]
else row)
ordem = ordem + 1
df_clustered.to_csv('df_clustered.csv')
return df_clustered
def probscale_plot(df, var):
x, y = logprob(df[var].values)
df['Relative Frequency (%)'] = np.sort(x)[::-1]*100
df.sort_values(axis=0, by=var, ascending=False)
fig, ax = plt.subplots(figsize=(7.5, 6))
plt.grid(True, which='both')
for n in df.Class.unique():
plt.plot(df['Relative Frequency (%)'][df.Class == n],
df[var][df.Class == n], 'o',
label=n, markersize=2.5)
plt.xlabel('Cumulative Frequency (%)')
plt.ylabel(str(var))
plt.legend()
ax.set_yscale('log')
ax.set_xlim(0.5, 99.5)
ax.set_xscale('prob')
buf = io.BytesIO() # in-memory files
plt.savefig(buf, format = "png") # save to the above file object
data = base64.b64encode(buf.getbuffer()).decode("utf8") # encode to html elements
plt.close()
return data