- No, data model bias and variance are only a challenge with reinforcement learning.
- Yes, data model bias is a challenge when the machine creates clusters.
- Yes, data model variance trains the unsupervised machine learning algorithm.
- No, data model bias and variance involve supervised learning.
- K-means
- Logistic regression
- Linear regression
- Principal Component Analysis (PCA)
Q. With traditional programming, the programmer typically inputs commands. With machine learning, the programmer inputs
- supervised learning
- data
- unsupervised learning
- algorithms
- It will take too long for programmers to scrub poor data.
- If the data is high quality, the algorithms will be easier to develop.
- Low-quality data requires much more processing power than high-quality data.
- If the data is low quality, you will get inaccurate results.
Q. You work for a large pharmaceutical company whose data science team wants to use unsupervised learning machine algorithms to help discover new drugs. What is an advantage to this approach?
- You will be able to prioritize different classes of drugs, such as antibiotics.
- You can create a training set of drugs you would like to discover.
- The algorithms will cluster together drugs that have similar traits.
- Human experts can create classes of drugs to help guide discovery.