-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
194 lines (156 loc) · 6.69 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
class ip2vec(object):
def __init__(self, X, Y, vocab_size, emb_size, learning_rate, epochs, batch_size=256, parameters=None, print_cost=True, plot_cost=True):
self.X = X
self.Y = Y
self.vocab_size = vocab_size
self.emb_size = emb_size
self.learning_rate = learning_rate
self.epochs = epochs
self.batch_size = batch_size
self.parameters = parameters
self.print_cost=print_cost
self.plot_cost=plot_cost
def initialize_wrd_emb(self, vocab_size, emb_size):
"""
vocab_size: int. vocabulary size of your corpus or training data
emb_size: int. word embedding size. How many dimensions to represent each vocabulary
"""
WRD_EMB = np.random.randn(vocab_size, emb_size) * 0.01
return WRD_EMB
def initialize_dense(self, input_size, output_size):
"""
input_size: int. size of the input to the dense layer
output_szie: int. size of the output out of the dense layer
"""
W = np.random.randn(output_size, input_size) * 0.01
return W
def initialize_parameters(self, vocab_size, emb_size):
"""
initialize all the trianing parameters
"""
WRD_EMB = self.initialize_wrd_emb(self.vocab_size, self.emb_size)
W = self.initialize_dense(emb_size, vocab_size)
parameters = {}
parameters['WRD_EMB'] = WRD_EMB
parameters['W'] = W
return parameters
def ind_to_word_vecs(self, inds, parameters):
"""
inds: numpy array. shape: (1, m)
parameters: dict. weights to be trained
"""
m = inds.shape[1]
WRD_EMB = parameters['WRD_EMB']
word_vec = WRD_EMB[inds.flatten(), :].T
assert(word_vec.shape == (WRD_EMB.shape[1], m))
return word_vec
def linear_dense(self, word_vec, parameters):
"""
word_vec: numpy array. shape: (emb_size, m)
parameters: dict. weights to be trained
"""
m = word_vec.shape[1]
W = parameters['W']
Z = np.dot(W, word_vec)
assert(Z.shape == (W.shape[0], m))
return W, Z
def softmax(self, Z):
"""
Z: output out of the dense layer. shape: (vocab_size, m)
"""
softmax_out = np.divide(np.exp(Z), np.sum(np.exp(Z), axis=0, keepdims=True) + 0.001)
assert(softmax_out.shape == Z.shape)
return softmax_out
def forward_propagation(self, inds, parameters):
word_vec = self.ind_to_word_vecs(inds, parameters)
W, Z = self.linear_dense(word_vec, parameters)
softmax_out = self.softmax(Z)
caches = {}
caches['inds'] = inds
caches['word_vec'] = word_vec
caches['W'] = W
caches['Z'] = Z
return softmax_out, caches
def cross_entropy(self, softmax_out, Y):
"""
softmax_out: output out of softmax. shape: (vocab_size, m)
"""
m = softmax_out.shape[1]
cost = -(1 / m) * np.sum(np.sum(Y * np.log(softmax_out + 0.001), axis=0, keepdims=True), axis=1)
return cost
def softmax_backward(self, Y, softmax_out):
"""
Y: labels of training data. shape: (vocab_size, m)
softmax_out: output out of softmax. shape: (vocab_size, m)
"""
dL_dZ = softmax_out - Y
assert(dL_dZ.shape == softmax_out.shape)
return dL_dZ
def dense_backward(self, dL_dZ, caches):
"""
dL_dZ: shape: (vocab_size, m)
caches: dict. results from each steps of forward propagation
"""
W = caches['W']
word_vec = caches['word_vec']
m = word_vec.shape[1]
dL_dW = (1 / m) * np.dot(dL_dZ, word_vec.T)
dL_dword_vec = np.dot(W.T, dL_dZ)
assert(W.shape == dL_dW.shape)
assert(word_vec.shape == dL_dword_vec.shape)
return dL_dW, dL_dword_vec
def backward_propagation(self, Y, softmax_out, caches):
dL_dZ = self.softmax_backward(Y, softmax_out)
dL_dW, dL_dword_vec = self.dense_backward(dL_dZ, caches)
gradients = dict()
gradients['dL_dZ'] = dL_dZ
gradients['dL_dW'] = dL_dW
gradients['dL_dword_vec'] = dL_dword_vec
return gradients
def update_parameters(self, parameters, caches, gradients, learning_rate):
vocab_size, emb_size = parameters['WRD_EMB'].shape
inds = caches['inds']
WRD_EMB = parameters['WRD_EMB']
dL_dword_vec = gradients['dL_dword_vec']
m = inds.shape[-1]
WRD_EMB[inds.flatten(), :] -= dL_dword_vec.T * learning_rate
parameters['W'] -= learning_rate * gradients['dL_dW']
def skipgram_model_training(self):
"""
X: Input word indices. shape: (1, m)
Y: One-hot encodeing of output word indices. shape: (vocab_size, m)
vocab_size: vocabulary size of your corpus or training data
emb_size: word embedding size. How many dimensions to represent each vocabulary
learning_rate: alaph in the weight update formula
epochs: how many epochs to train the model
batch_size: size of mini batch
parameters: pre-trained or pre-initialized parameters
print_cost: whether or not to print costs during the training process
"""
costs = []
m = self.X.shape[1]
if self.parameters is None:
self.parameters = self.initialize_parameters(self.vocab_size, self.emb_size)
for epoch in range(self.epochs):
epoch_cost = 0
batch_inds = list(range(0, m, self.batch_size))
np.random.shuffle(batch_inds)
for i in batch_inds:
X_batch = self.X[:, i:i+self.batch_size]
Y_batch = self.Y[:, i:i+self.batch_size]
softmax_out, caches = self.forward_propagation(X_batch, self.parameters)
gradients = self.backward_propagation(Y_batch, softmax_out, caches)
self.update_parameters(self.parameters, caches, gradients, self.learning_rate)
cost = self.cross_entropy(Y_batch, softmax_out)
epoch_cost += np.squeeze(cost)
costs.append(epoch_cost)
if self.print_cost and epoch % (self.epochs // 100) == 0:
print("Cost after epoch {}: {}".format(epoch, epoch_cost))
if epoch % (self.epochs // 50) == 0:
self.learning_rate *= 0.98
if self.plot_cost:
plt.plot(np.arange(self.epochs), costs)
plt.xlabel('# of epochs')
plt.ylabel('cost')
return self.parameters