-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathImagePrepare.py
124 lines (110 loc) · 3.89 KB
/
ImagePrepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
from DepthSense import DepthSense
imageL = None
imageR = None
class ImagePrepare(object):
def __init__(self, i_L, i_R, max_block, min_block):
global imageL
global imageR
imageL = i_L
imageR = i_R
self.block_list = []
self.height = 0
self.length = 0
self.max_block = max_block
self.min_block = min_block
self.height_block = []
self.length_block = []
# set/get length and height
def set_dimensions(self):
global imageL
self.height = imageL.shape[0]
self.length = imageL.shape[1]
# checks if dimension value is prime or not
def is_prime(self, x):
for i in range(self.min_block, self.max_block+1):#14
if x % i == 0:
return False
return True
# sets a new divisible size if dimension is a prime number
def set_new_size(self):
global imageR
global imageL
if self.is_prime(imageR.shape[1]):
new_width = imageR.shape[1] - 1
imageR = imageR[:, :new_width]
imageL = imageL[:, :new_width]
if self.is_prime(imageR.shape[0]):
new_height = imageR.shape[0] - 1
imageR = imageR[:new_height, :]
imageL = imageL[:new_height, :]
# checks if right and left image dimensions are equal
@staticmethod
def check_shape():
global imageL
global imageR
if imageL.shape != imageR.shape:
return False
return True
def get_right(self):
global imageR
return imageR
def get_left(self):
global imageL
return imageL
# converts the input image to grayscale
def rgb2gray(self, image):
for i in range(0, self.height):
for j in range(0, self.length):
image[i][j] = image[i, j, 0] * 0.299 + image[i, j, 1] * 0.587 + image[i, j, 2] * 0.114
# converting each pixel r-g-b to grayscale using weighted average.
return image
# read image from source and initialise disparity map
def read_image(self):
global imageL
global imageR
imageL = self.rgb2gray(imageL)
imageR = self.rgb2gray(imageR)
# generates the block to optimise the execution time and accuracy of result
def block_dimension(self):
self.height_block = []
self.length_block = []
# finding a common factor as length for tile
for i in range(self.max_block, self.min_block-1, -1): #14
if self.height % i == 0:
self.height_block.append(i)
# finding a common factor as height for tile
for i in range(self.max_block, self.min_block-1, -1):
if self.length % i == 0:
self.length_block.append(i)
return self.height_block, self.length_block
# list a set of blocks for optimum shape
def generate_block_list(self):
global imageR
height_list, length_list = self.block_dimension()
for i in range(len(height_list)):
for j in range(len(length_list)):
self.block_list.append((height_list[i], length_list[j]))
if len(self.block_list) >= 1:
return self.block_list
return self.block_list
# iterates size modification until optimum size is reached
def check_blocks(self):
count = 0
while len(self.block_list) < 1 or len(self.length_block) == 0 or len(self.height_block) == 0:
count += 1
self.block_list = []
self.set_new_size()
self.set_dimensions()
self.generate_block_list()
return count
# final call function
def main(self):
global imageL
global imageR
self.read_image()
if self.check_shape():
if self.check_blocks() <= 60:
return self.block_list
else:
return []