diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py index 29e297cb28a3b8..2cc15f7650ac19 100644 --- a/pandas/core/indexes/interval.py +++ b/pandas/core/indexes/interval.py @@ -1410,7 +1410,7 @@ def interval_range( Left bound for generating intervals end : numeric or datetime-like, default None Right bound for generating intervals - periods : integer, default None + periods : int, default None Number of periods to generate freq : numeric, string, or DateOffset, default None The length of each interval. Must be consistent with the type of start diff --git a/pandas/core/util/hashing.py b/pandas/core/util/hashing.py index 4bcc53606aecab..ca5279e93f678a 100644 --- a/pandas/core/util/hashing.py +++ b/pandas/core/util/hashing.py @@ -66,11 +66,12 @@ def hash_pandas_object( Parameters ---------- - index : boolean, default True + index : bool, default True include the index in the hash (if Series/DataFrame) - encoding : string, default 'utf8' + encoding : str, default 'utf8' encoding for data & key when strings - hash_key : string key to encode, default to _default_hash_key + hash_key : str, default '_default_hash_key' + hash_key for string key to encode categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. @@ -150,8 +151,8 @@ def hash_tuples(vals, encoding="utf8", hash_key=None): Parameters ---------- vals : MultiIndex, list-of-tuples, or single tuple - encoding : string, default 'utf8' - hash_key : string key to encode, default to _default_hash_key + encoding : str, default 'utf8' + hash_key : str, default '_default_hash_key' Returns ------- @@ -193,8 +194,8 @@ def hash_tuple(val, encoding: str = "utf8", hash_key=None): Parameters ---------- val : single tuple - encoding : string, default 'utf8' - hash_key : string key to encode, default to _default_hash_key + encoding : str, default 'utf8' + hash_key : str, default '_default_hash_key' Returns ------- @@ -216,8 +217,8 @@ def _hash_categorical(c, encoding: str, hash_key: str): Parameters ---------- c : Categorical - encoding : string, default 'utf8' - hash_key : string key to encode, default to _default_hash_key + encoding : str, default 'utf8' + hash_key : str, default '_default_hash_key' Returns ------- @@ -253,9 +254,10 @@ def hash_array(vals, encoding: str = "utf8", hash_key=None, categorize: bool = T Parameters ---------- vals : ndarray, Categorical - encoding : string, default 'utf8' + encoding : str, default 'utf8' encoding for data & key when strings - hash_key : string key to encode, default to _default_hash_key + hash_key : str, default '_default_hash_key' + hash_key for string key to encode categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values.