-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix.cpp
551 lines (511 loc) · 16.8 KB
/
Matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#include "Matrix.h"
#include "SLE.h"
using namespace std;
void Matrix::rawClean()
{
for (size_t i = 0; i < this->size; i++)
delete[] this->M[i];
delete[] this->M;
}
void Matrix::rawCopy(const Matrix& that)
{
this->size = that.size;
this->M = new double* [this->size];
for (size_t i = 0; i < this->size; i++)
this->M[i] = new double[this->size];
for (size_t i = 0; i < this->size; i++)
for (size_t j = 0; j < this->size; j++)
this->M[i][j] = that.M[i][j];
}
Matrix::Matrix(const Matrix& that) { rawCopy(that); }
Matrix::Matrix() { size = 0; this->M = nullptr; }
Matrix::~Matrix() { rawClean(); }
Matrix& Matrix::operator = (const Matrix& that)
{
if (this != &that) {
rawClean();
rawCopy(that);
}
return *this;
}
size_t Matrix::getSize() const { return size; }
double*& Matrix::operator [] (const size_t& r) { return M[r]; } // с изменением
double*& Matrix::get(const size_t& r) const { return M[r]; }
Matrix::Matrix(const size_t& s) : size(s)
{
M = new double* [size];
for (size_t i = 0; i < size; i++)
M[i] = new double[size];
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
if (i == j)
M[i][j] = 1;
else
M[i][j] = 0;
}
Matrix::Matrix(const initializer_list<Vector>& list) : size(list.begin()->getSize())
{
M = new double* [size];
for (size_t i = 0; i < size; i++)
M[i] = new double[size];
size_t i = 0;
for (const auto& v : list)
{
for (size_t j = 0; j < size; j++)
M[i][j] = v.get(j);
i++;
}
for (i; i < size; i++)
for (size_t j = 0; j < size; j++)
M[i][j] = 0;
}
Matrix::Matrix(const initializer_list<double>& list)
{
size = ceil(sqrt(list.size()));
M = new double* [size];
for (size_t i = 0; i < size; i++)
M[i] = new double[size];
size_t ii = 0;
for (const auto& el : list)
{
M[ii / size][ii % size] = el;
ii++;
}
for (size_t i = ii / size; i < size; i++)
for (size_t j = ii % size; j < size; j++)
M[i][j] = 0;
}
Matrix& Matrix::operator = (const initializer_list<Vector>& list)
{
*this = Matrix(list);
return *this;
}
Matrix Matrix::H() const // нахождение матрицы отражений
{
Matrix result(size);
Matrix R = *this;
for (size_t i = 0; i < size - 1; i++) {
Vector t(size - i);
for (size_t j = 0; j < size - i; j++)
t[j] = R.get(j + i)[i];
Vector b(this->size - i, t); // вектор b - первый столбец нашей матрицы размера n - i, где i - итерация главного цикла for
for (size_t j = 0; j < size - i; j++)
if (j == 0)
t[j] = 1;
else
t[j] = 0;
Vector c(size - i, t); // вектор c - единично-координатный вектор
Vector temp = b - (b.abs() * c);
Vector w = (temp / sqrt(2 * (b * temp))); // ключевой вектор, из которого строится матрица отражений для каждой итерации
Matrix Omega(size - i);
for (size_t j = 0; j < size - i; j++)
for (size_t k = 0; k < size - i; k++)
Omega[j][k] = w.get(j) * w.get(k);
Matrix E(size - i);
Matrix EU = E - (2 * Omega); // матрица отражений для каждой итерации
Matrix U(size); // обобщённая матрица отражений (размера n)
for (size_t j = 0; j < size; j++)
for (size_t k = 0; k < size; k++)
if (j >= i && k >= i) {
U[j][k] = EU.get(j - i)[k - i];
}
else {
if (j == k)
U[j][k] = 1;
else
U[j][k] = 0;
}
result = U * result; // формирование матрицы отражений в каждой итерации цикла
R = U * R;
}
return result;
}
// стандартные операторы для работы с матрицами
Matrix Matrix::operator + (const Matrix& that) const
{
Matrix result(size);
for (size_t i = 0; i < result.size; i++)
for (size_t j = 0; j < result.size; j++)
result.M[i][j] = M[i][j] + that.M[i][j];
return result;
}
Matrix& Matrix::operator += (const Matrix& that)
{
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
M[i][j] += that.M[i][j];
return *this;
}
Matrix Matrix::operator - (const Matrix& that) const
{
Matrix result(size);
for (size_t i = 0; i < result.size; i++)
for (size_t j = 0; j < result.size; j++)
result.M[i][j] = M[i][j] - that.M[i][j];
return result;
}
Matrix& Matrix::operator -= (const Matrix& that)
{
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
M[i][j] -= that.M[i][j];
return *this;
}
Matrix Matrix::operator * (const Matrix& that) const
{
Matrix result(size);
for (size_t i = 0; i < result.size; i++) {
result.M[i][i] = 0;
for (size_t j = 0; j < result.size; j++)
for (size_t k = 0; k < result.size; k++)
result.M[i][j] += M[i][k] * that.M[k][j];
}
return result;
}
Matrix& Matrix::operator *= (const Matrix& that)
{
Matrix result(size);
for (size_t i = 0; i < result.size; i++) {
result.M[i][i] = 0;
for (size_t j = 0; j < result.size; j++)
for (size_t k = 0; k < result.size; k++)
result.M[i][j] += M[i][k] * that.M[k][j];
}
*this = result;
return *this;
}
Matrix Matrix::operator * (const double& coeff) const
{
Matrix result(size);
for (size_t i = 0; i < result.size; i++)
for (size_t j = 0; j < result.size; j++)
result.M[i][j] = M[i][j] * coeff;
return result;
}
Matrix& Matrix::operator *= (const double& coeff)
{
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
M[i][j] *= coeff;
return *this;
}
Matrix operator * (const double& coeff, const Matrix& that)
{
Matrix result(that.getSize());
for (size_t i = 0; i < result.getSize(); i++)
for (size_t j = 0; j < result.getSize(); j++)
result[i][j] = that.get(i)[j] * coeff;
return result;
}
Matrix Matrix::operator !() const
{
Matrix result(size);
for (size_t i = 0; i < result.size; i++)
for (size_t j = i; j < result.size; j++)
{
if (i == j)
result.M[i][j] = M[i][j];
else
{
double temp = M[i][j];
result.M[i][j] = M[j][i];
result.M[j][i] = temp;
}
}
return result;
}
bool Matrix::operator == (const Matrix& that) const
{
bool result = true;
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
if (M[i][j] != that.M[i][j])
{
result = false;
break;
}
return result;
}
bool Matrix::operator != (const Matrix& that) const
{
bool result = false;
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
if (M[i][j] != that.M[i][j])
{
result = true;
break;
}
return result;
}
void Matrix::swap(const size_t& i1, const size_t& i2) { // смена строк местами
for (size_t i = 0; i < size; i++) {
double temp = M[i1][i];
M[i1][i] = M[i2][i];
M[i2][i] = temp;
}
}
// вычисление определителя матрицы
double Matrix::det() const {
Matrix T = *this;
double result = 1;
for (size_t i = 0; i < T.size - 1; i++) {
if (!T.M[i][i])
for (size_t j = i + 1; j < T.size; j++) {
if (T.M[j][i]) {
T.swap(j, i);
break;
}
}
for (size_t j = i + 1; j < T.size; j++) {
double temp = T.M[j][i] / T.M[i][i];
for (size_t k = 0; k < T.size; k++)
T.M[j][k] -= T.M[i][k] * temp;
}
}
for (size_t i = 0; i < T.size; i++)
result *= T.M[i][i];
return result;
}
// нахождение обратной матрицы методом Жордана-Гаусса
Matrix Matrix::reflect() const
{
Matrix E(this->size);
Matrix T = *this;
// прямой ход метода Гаусса
for (size_t i = 0; i < T.size - 1; i++) {
if (!T.M[i][i])
for (size_t j = i + 1; j < T.size; j++) {
if (T.M[j][i]) {
T.swap(j, i);
E.swap(j, i);
break;
}
}
for (size_t j = i + 1; j < T.size; j++) {
double temp = T.M[j][i] / T.M[i][i];
for (size_t k = 0; k < T.size; k++) {
E.M[j][k] -= E.M[i][k] * temp;
T.M[j][k] -= T.M[i][k] * temp;
}
}
}
// обратный ход метода Гаусса
for (int i = T.size - 1; i > 0; i--) {
for (int j = i - 1; j >= 0; j--) {
double temp = T.M[j][i] / T.M[i][i];
for (int k = T.size - 1; k >= 0; k--) {
E.M[j][k] -= E.M[i][k] * temp;
T.M[j][k] -= T.M[i][k] * temp;
}
}
}
for (size_t i = 0; i < T.size; i++) {
for (size_t j = 0; j < this->size; j++)
E.M[i][j] /= T.M[i][i];
T.M[i][i] = 1;
}
return E;
}
Matrix Matrix::diag() const
{
Matrix result(size);
for (size_t i = 0; i < size; i++)
result[i][i] = M[i][i];
return result;
}
Matrix Matrix::lowerTriangle() const
{
Matrix result(size);
for (size_t i = 0; i < size; i++)
for (size_t j = i; j < size; j++)
if (i == j)
result[j][i] = 0;
else
result[j][i] = M[j][i];
return result;
}
Matrix Matrix::upperTriangle() const
{
Matrix result(size);
for (size_t i = 0; i < size; i++)
for (size_t j = i; j < size; j++)
if (i == j)
result[i][j] = 0;
else
result[i][j] = M[i][j];
return result;
}
Vector Matrix::diagV() const
{
Vector result(size);
for (size_t i = 0; i < size; i++)
result[i] = M[i][i];
return result;
}
double Matrix::sNorm() const
{
double result = 0;
for (size_t i = 0; i < size; i++)
result += M[i][i] * M[i][i];
return sqrt(result);
}
// операторы ввода/вывода матрицы
istream& operator >> (istream& in, Matrix& that)
{
for (size_t i = 0; i < that.getSize(); i++)
for (size_t j = 0; j < that.getSize(); j++)
in >> that[i][j];
return in;
}
ostream& operator << (ostream& out, const Matrix& that)
{
for (size_t i = 0; i < that.getSize(); i++)
{
for (size_t j = 0; j < that.getSize(); j++)
out << that.get(i)[j] << '\t';
out << endl;
}
return out;
}
Vector operator * (const Matrix& that, const Vector& v)
{
Vector result(v.getSize());
for (size_t i = 0; i < result.getSize(); i++)
{
result[i] = 0;
for (size_t j = 0; j < result.getSize(); j++)
result[i] += that.get(i)[j] * v.get(j);
}
return result;
}
// преобразование Хаусхолдера для первого шага QR-метода
Matrix Matrix::Hausholder() const
{
Matrix result(size);
double sum = 0; // для коэффициента s
for (size_t i = 1; i < size; i++)
sum += M[i][0] * M[i][0];
sum = sqrt(sum);
double s = -1 * (M[1][0] / abs(M[1][0])) * sum;
double mu = 1 / sqrt(2 * s * (s - M[1][0]));
Vector w(size);
w[0] = 0;
w[1] = M[1][0] - s;
for (size_t i = 2; i < size; i++)
w[i] = M[i][0];
w *= mu;
Matrix W(size);
for (size_t i = 0; i < size; i++)
for (size_t j = 0; j < size; j++)
W[i][j] = w[i] * w[j];
Matrix H = Matrix(size) - 2 * W;
result = H * *this * H;
return result;
}
// Построение матрицы отражений для каждого шага QR-алгоритма
Matrix Matrix::QR_reflection() const
{
ofstream fout("output.txt", ios::app);
fout << fixed << setprecision(8);
Matrix Q(size), R = *this;
// выполняется n - 1 раз
for (size_t i = 0; i < size - 1; i++)
{
double s = 0;
for (size_t j = i; j < size; j++)
s += R[j][i] * R[j][i];
s = -1 * (R[i][i] / abs(R[i][i])) * sqrt(s);
double mu = 1 / sqrt(2 * s * (s - R[i][i]));
Vector w(size, 0);
w[i] = R[i][i] - s;
for (size_t j = i + 1; j < size; j++)
w[j] = R[j][i];
w *= mu;
Matrix W(size);
for (size_t j = 0; j < size; j++)
for (size_t k = 0; k < size; k++)
W[j][k] = w[j] * w[k];
Matrix H = Matrix(size) - 2 * W;
Q *= H;
R = H * R;
}
return R * Q;
}
// QR метод нахождения собственных чисел и векторов матрицы
void Matrix::QR(const double& e) const
{
ofstream fout("output.txt", ios::app);
fout << fixed << setprecision(8);
/*
* Первый шаг - матрица Хессинберга, получаемая в результате преобразования Хессенберга
*/
Matrix B = (*this).Hausholder();
Vector result = B.diagV() /* запись в результат текущих приближений собственных значений */, resn1(size);
/*
* Следующие шаги - матрицы отражений
*/
size_t iterationCounter = 0;
do
{
resn1 = result;
B = B.QR_reflection();
result = B.diagV();
iterationCounter++;
} while ((result - resn1).infNorm() > e); // условие конца процесса
// печтаь результата
fout << "Iteration: " << iterationCounter << endl;
fout << "Eigenvalues: " << endl;
for (size_t i = 0; i < size; i++)
fout << i + 1 << ") " << result[i] << endl;
fout << endl;
}
// Обратные итерации со сдвигом с соотношением Рэлея
void Matrix::RQI(const double& e, const double& lambda_e) const
{
ofstream fout("output.txt", ios::app);
fout << fixed << setprecision(8);
/*
* Шаг 0: подбор вектора, евклидома норма которого равна нулю
*/
Vector xkn1(size, 0);
xkn1[0] = 1;
/*
* Шаг 1: для k = 1, 2, ... :
* 1.1: вычисление ro = (A * xk, xk), в случае первого шага это xkn1;
* 1.2: вычисление yk из уравнения (A - ro * E) * yk = xkn1;
* 1.3: нормирование yk: xk = yk / ||yk||;
* 1.4: проверка ro на сходимость и проверка конца процесса.
* (из Вержбицкого)
* На деле алгоритм пришлось слегка изменить...
*/
Vector yk(size), xk(size);
double ro = lambda_e, difference = e + 1;
size_t iterationCount = 0;
while (difference > e) // условие конца - норма соседних приближений собственных векторов
{
Matrix M = (*this - ro * Matrix(size));
// если матрица вырождена, то найдено точное собственное значение
if (!M.det())
break;
SLE sle(M, xkn1);
yk = sle.HR();
xk = yk / yk.euclidNorm();
difference = (xk - xkn1).infNorm();
xkn1 = xk;
ro = (*this * xk) * xk;
iterationCount++;
}
// печать результата
fout << "Iteration: " << iterationCount;
if (!iterationCount)
fout << " (The eigenvalue was guessed by the approximation)";
fout << "\nEigenvalue: " << ro << endl;
if (iterationCount)
{
fout << "Eigenvector:\n";
for (size_t i = 0; i < size; i++)
fout << "[" << i + 1 << "] = " << xk[i] << endl;
}
fout << endl;
}