-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha.cpp
224 lines (194 loc) · 4.69 KB
/
a.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include<bits/stdc++.h>
#include"kmeans.cpp" /* used an implementation provided by https://github.com/aditya1601/kmeans-clustering-cpp.git*/
#include<eigen3/Eigen/Eigenvalues> /* eigen3 lib installed using sudo apt-get install libeigen3-dev */
using namespace std;
vector< vector <double>> affinity;
vector<vector<int>> points;
vector<vector<double>> diagonal_matr;
vector<vector<double>> laplacian;
vector<double> eigvalues;
vector<vector<double>> eigvectors;
vector<pair<double,vector<double>>> eig_pairs; /* stores eigenvalue and it's correspongding eigenvector */
int k=2;
// class NJW
// {
// public:
// vector< vector <double>> affinity;
// vector<vector<int>> points;
// vector<vector<double>> diagonal_matr;
// vector<vector<double>> laplacian;
// vector<double> eigvalues;
// vector<vector<double>> eigvectors;
// vector<pair<double,vector<double>>> eig_pairs;
// int k=2;
// };
/* calculates the affinity between data points */
void populateAffinity()
{
int n=points.size();
affinity.resize(n);
for(int i=0;i<n;i++)
affinity[i].resize(n,0);
double sigma=1;
for(int i=0;i<points.size();i++)
{
for(int j=0;j<points.size();j++)
{
double dist=pow(points[i][0]-points[j][0],2)+pow(points[i][1]-points[j][1],2);
double aff=exp(-dist/(2*pow(sigma,2))); // sigma taken 1
affinity[i][j]=aff;
}
affinity[i][i]=0;
}
}
/* computes the diagonal matrix */
void populateDiagonal()
{
int n=points.size();
diagonal_matr.resize(n);
for(int i=0;i<n;i++)
diagonal_matr[i].resize(n,0);
for(int i=0;i<n;i++)
{
double sum=0;
for(int j=0;j<n;j++)
sum+=affinity[i][j];
diagonal_matr[i][i]=sum;
}
}
void printMatrices()
{
cout<<"Affinity matrix: \n";
for(int i=0;i<points.size();i++)
{
for(int j=0;j<points.size();j++)
cout<<affinity[i][j]<<" ";
cout<<endl;
}
cout<<"Diagonal matrix: \n";
for(int i=0;i<diagonal_matr.size();i++)
{
for(int j=0;j<diagonal_matr[i].size();j++)
cout<<diagonal_matr[i][j]<<" ";
cout<<endl;
}
cout<<"Laplacian matrix: \n";
for(int i=0;i<laplacian.size();i++)
{
for(int j=0;j<laplacian[i].size();j++)
cout<<laplacian[i][j]<<" ";
cout<<endl;
}
}
void printEigen()
{
cout<<"Eigen values are: \n";
for(int i=0;i<eigvalues.size();i++)
cout<<eigvalues[i]<<" ";
cout<<endl;
cout<<"Eigen vectors are: \n";
for(int i=0;i<eigvectors.size();i++)
{
for(int j=0;j<eigvectors[i].size();j++)
cout<<eigvectors[i][j]<<" ";
cout<<endl;
}
cout<<"K largest eigen vectors are: \n";
for(int i=0;i<k;i++)
{
for(int j=0;j<eig_pairs[i].second.size();j++)
cout<<eig_pairs[i].second[j]<<" ";
cout<<endl;
}
}
/* calculates the laplacian, L=D^(-1/2)AD^(1/2) */
void populateLaplacian()
{
int n=points.size();
laplacian.resize(n);
for(int i=0;i<n;i++)
laplacian[i].resize(n,0);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
laplacian[i][j]=affinity[i][j]/(sqrt(diagonal_matr[i][i] * diagonal_matr[j][j]));
}
}
/* calculates all eigen values and eigen vectors of laplacian */
void getEigenVectors()
{
int n=laplacian.size();
// Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> A;
Eigen::MatrixXd A(5,5);
A.resize(n, n);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
A(i, j) = laplacian[i][j];
}
}
// Eigen::Matrix<double, n, n> A = laplacian;
Eigen::EigenSolver<Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic>> s(A); // the instance s includes the eigensystem
for(int i=0;i<n;i++)
eigvalues.push_back(real(s.eigenvalues()(i)));
// cout<<s.eigenvectors()<<endl;
// cout<<s.eigenvectors().shape();
for(int i=0;i<n;i++)
{
vector<double> temp;
for(int j=0;j<n;j++)
temp.push_back(real(s.eigenvectors().col(i)(j)));
eigvectors.push_back(temp);
}
}
/* sort eigenvectors according to eigen values */
void sortEigen()
{
eig_pairs.clear();
for(int i=0;i<eigvalues.size();i++)
eig_pairs.push_back({abs(eigvalues[i]),eigvectors[i]});
sort(eig_pairs.rbegin(),eig_pairs.rend());
}
void kmeans_aux()
{
vector<vector<double>> Y;
int n=laplacian.size();
for(int i=0;i<n;i++)
{
vector<double> temp;
for(int j=0;j<k;j++)
temp.push_back(eig_pairs[j].second[i]);
double sq_sum=0;
for(int j=0;j<temp.size();j++)
sq_sum+=pow(temp[j],2);
sq_sum=sqrt(sq_sum);
for(int j=0;j<temp.size();j++)
temp[j]/=sq_sum;
Y.push_back(temp);
}
int pointId = 1;
vector<Point> all_points;
for(int i=0;i<Y.size();i++)
{
Point point(pointId, Y[i]);
all_points.push_back(point);
pointId++;
}
int iters = 100;
KMeans kmeans(k, iters);
kmeans.run(all_points);
}
int main()
{
points= { {0,1},{1,2},{2,3},{38,48},{48,58} };
populateAffinity();
populateDiagonal();
populateLaplacian();
printMatrices();
getEigenVectors();
sortEigen();
printEigen();
kmeans_aux();
return 0;
}