-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathselect_subset.py
332 lines (253 loc) · 13.1 KB
/
select_subset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import argparse
import multiprocessing
import time
import random
from math import ceil, floor
from functools import partial, reduce
from typing import List, Optional, Tuple, Iterable
import numpy as np
import numpy.typing as npt
from tqdm import tqdm
import gc
import torch
from datasets import load_from_disk, load_dataset, concatenate_datasets, Dataset
def maybe_concatenate(datasets):
return (concatenate_datasets(datasets) if len(datasets) >= 1 else datasets[0])
def selector(dataset_paths: List[str],
selected_rows: Optional[npt.NDArray[np.float32]] = None,
sequence_lengths: Optional[npt.NDArray[np.int32]] = None,
seq_len_field: Optional[str] = None,
json: bool = False) -> Iterable[Tuple[Dataset, int]]:
rows_processed = 0
for path in dataset_paths:
print(f"Loading {path}")
if json: # json datasets are not sharded
try:
dataset = load_dataset("json", data_files=[path], split="train")
except Exception as e:
print("Encountered exception")
print(e)
wait_time = random.random() * 10
print("Waiting for {} seconds".format(wait_time))
time.sleep(wait_time)
dataset = load_dataset("json", data_files=[path], split="train", download_mode='force_redownload')
else:
dataset = load_from_disk(path, keep_in_memory=False)
num_rows = len(dataset)
if selected_rows is not None:
subset_mask = (selected_rows >= rows_processed) & (selected_rows < rows_processed + num_rows)
subset_selected_rows = selected_rows[subset_mask]
subset_selected_rows.sort()
dataset = dataset.select(subset_selected_rows - rows_processed)
else:
subset_mask = slice(rows_processed, rows_processed + num_rows)
rows_processed += num_rows
if sequence_lengths is not None:
num_tokens = sequence_lengths[subset_mask].sum()
else:
num_tokens = sum(dataset[seq_len_field])
yield dataset, num_tokens
def datasets_select(datasets: List[Dataset], start: int, end: int):
i = 0
skipped = 0
output = []
for dataset in datasets:
if start > i + len(dataset):
i += len(dataset)
skipped += len(dataset)
continue
elif end < i:
break
output.append(dataset)
i += len(dataset)
return maybe_concatenate(output).select(range(start - skipped, end - skipped))
def sharder(dataset_iterator: Iterable[Tuple[Dataset, int]], tokens_per_shard):
tokens_in_shard = 0
current_shard = []
for dataset, tokens in dataset_iterator:
tokens_in_shard += tokens
current_shard.append(dataset)
if tokens_in_shard >= tokens_per_shard:
# current_shard = maybe_concatenate(current_shard)
num_rows = sum(len(ds) for ds in current_shard)
# Assume that the number of tokens per row is roughly the same
row_splits = [round(t / tokens_in_shard * num_rows) for t in range(0, tokens_in_shard, tokens_per_shard)]
for a, b in zip(row_splits[:-1], row_splits[1:]):
yield datasets_select(current_shard, a, b)
tokens_in_shard -= tokens_per_shard
current_shard = [datasets_select(current_shard, row_splits[-1], num_rows)]
tokens_in_shard = round(len(current_shard[0]) / num_rows * tokens_in_shard)
gc.collect()
if len(current_shard) > 0 and tokens_in_shard > 0:
yield maybe_concatenate(current_shard)
def load_attributes_for_dataset(path, metric_field, reference_field, seq_len_field, domain_field, seed=42):
try:
print(f"Loading {path}")
dataset = load_from_disk(path)
if metric_field is None:
metrics = np.ones(len(dataset))
else:
metrics = sum(
np.array(dataset[field], dtype=np.float32)
for field in metric_field
)
if reference_field is not None:
metrics -= np.array(dataset[reference_field], dtype=np.float32)
if domain_field is not None:
if "." in domain_field:
domain_field, *dict_fields = domain_field.split(".")
get_field = lambda x: reduce(dict.get, [x, *dict_fields])
else:
get_field = lambda x: x
domains = np.array([hash(get_field(x)) % 2**32 for x in dataset[domain_field]], dtype=np.uint32)
else:
domains = None
seq_len = np.array(dataset[seq_len_field], dtype=np.int32)
return metrics, seq_len, domains
except Exception as e:
print("*****"* 10)
print(f"PROBLEM WITH LOADING ATTRIBUTES FOR PATH '{path}'")
print("*****" * 10)
raise e
def load_domains_for_dataset(path):
return torch.load(path).numpy()
def special_metrics_for_dataset(path):
return np.load(path)
def load_attributes_for_all_datasets(args):
if args.attributes:
assert len(args.inputs) == len(args.attributes), f"{len(args.inputs)} != {len(args.domains)}"
if args.domains:
assert len(args.inputs) == len(args.domains), f"{len(args.inputs)} != {len(args.domains)}"
with multiprocessing.Pool(args.num_workers) as pool:
attributes = pool.map(
partial(
load_attributes_for_dataset,
seq_len_field=args.seq_len_field,
metric_field=args.metric_field,
reference_field=args.reference_field,
domain_field=args.domain_field,
seed=args.seed),
args.attributes or args.inputs)
if args.domain_field is None and args.domains:
domains = pool.map(load_domains_for_dataset, args.domains)
else:
domains = None
if args.metric_field is None and args.metrics:
metrics = pool.map(special_metrics_for_dataset, args.metrics)
else:
metrics = None
# for i in range(len(metrics)):
# assert len(metrics[i]) == len(attributes[i][0]), f"{len(metrics[i])} != {len(attributes[i][0])}"
if metrics is not None:
metrics = np.concatenate(metrics)
else:
metrics = np.concatenate([m[0] for m in attributes])
num_tokens = np.concatenate([m[1] for m in attributes])
if args.domain_field is not None:
domains = np.concatenate([m[2] for m in attributes])
elif domains is not None:
domains = np.concatenate(domains)
else:
domains = None
assert len(metrics) == len(num_tokens)
assert domains is None or len(domains) == len(num_tokens)
return metrics, num_tokens, domains
def percentile_indices(metrics, num_tokens, total_num_tokens, tokens_to_select, margin):
print(f"Sorting...")
indices = np.argsort(metrics)
# TODO replace with argpartition / topk of upper_limit followed by sorting
if tokens_to_select == 0:
return indices[:0], num_tokens[:0]
upper_limit = ceil(len(metrics) * (tokens_to_select / total_num_tokens + margin))
indices = indices[:upper_limit]
selected_num_tokens = num_tokens[indices]
cum_tokens = np.cumsum(selected_num_tokens)
cutoff = np.argmax(cum_tokens >= tokens_to_select)
if cum_tokens[cutoff] < tokens_to_select:
print(f"Margin insufficient: {cum_tokens[cutoff]}/{tokens_to_select}")
return percentile_indices(metrics, num_tokens, total_num_tokens, tokens_to_select, 2*margin)
return indices[:cutoff + 1], selected_num_tokens[:cutoff + 1]
def equi_domain_percentile_indices(metrics, num_tokens, total_num_tokens, domains, tokens_to_select, margin):
unique_domains = np.unique(domains)
indices = []
selected_num_tokens = []
for domain in tqdm(unique_domains):
domain_mask = (domains == domain)
domain_metrics = metrics[domain_mask]
domain_num_tokens = num_tokens[domain_mask]
total_domain_num_tokens = np.sum(domain_num_tokens)
tokens_to_select_in_domain = int(total_domain_num_tokens / total_num_tokens * tokens_to_select)
print("Domain index:", domain, "Domain size:", len(domain_metrics), "Domain tokens:", total_domain_num_tokens, "Select:", tokens_to_select_in_domain)
domain_indices, domain_num_tokens = percentile_indices(
domain_metrics,
domain_num_tokens,
total_domain_num_tokens,
tokens_to_select_in_domain,
margin)
indices.append(np.where(domain_mask)[0][domain_indices])
selected_num_tokens.append(domain_num_tokens)
return (
np.concatenate(indices),
np.concatenate(selected_num_tokens)
)
def main(args):
if args.tokens > 0:
metrics, num_tokens, domains = load_attributes_for_all_datasets(args)
np.random.seed(args.seed)
if args.normalize:
metrics = (metrics - metrics.mean()) / metrics.std()
if args.temperature != 0.0:
metrics = metrics / args.temperature
if args.sample and args.temperature != 0.0:
metrics += np.random.gumbel(size=len(metrics)) # Use topk-gumbel trick
if args.select_bottom:
metrics = metrics
else:
metrics = -metrics # We use argsort and always select the first indices
print(f"Counting tokens...")
total_num_tokens = np.sum(num_tokens)
print(f"{total_num_tokens} tokens")
if domains is None:
indices, num_tokens = percentile_indices(metrics, num_tokens, total_num_tokens, args.tokens, args.margin)
else:
indices, num_tokens = equi_domain_percentile_indices(metrics, num_tokens, total_num_tokens, domains, args.tokens, args.margin)
dataset_generator = selector(args.inputs, indices, num_tokens, json=args.json)
else:
dataset_generator = selector(args.inputs, seq_len_field=args.seq_len_field, json=args.json)
for shard, dataset in enumerate(sharder(dataset_generator, args.tokens_per_shard)):
print(f"Saving shard {shard}")
if not os.path.exists(args.output + f"/{shard}/state.json"):
dataset.save_to_disk(args.output + f"/{shard}", num_proc=args.num_workers)
num_shards = shard + 1
print("Renaming shards")
for shard in range(num_shards):
os.rename(args.output + f"/{shard}", args.output + f"/{shard}-{num_shards}{args.shard_suffix}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for selecting percentile from a dataset.")
parser.add_argument("inputs", type=str, nargs="+", help="Path to the input datasets.")
parser.add_argument("output", type=str, help="Path to the output dataset.")
parser.add_argument("--attributes", type=str, nargs="+", default=[], help="Path to attribute datasets, should match input size")
parser.add_argument("--domains", type=str, nargs="+", default=[], help="Path to domains datasets, should match input size")
parser.add_argument("--metrics", type=str, nargs="+", default=[], help="Path to metrics datasets, should match input size")
parser.add_argument("--json", action="store_true", help="Save as json instead of arrow.")
parser.add_argument("-n", "--seq_len_field", type=str, help="Num token field.", default="input_len")
parser.add_argument("-m", "--metric_field", type=str, nargs="+", help="Field for metric. Leave empty for random selection", default=None)
parser.add_argument("-r", "--reference_field", type=str, help="Field for reference. Leave empty for no reference", default=None)
parser.add_argument("-d", "--domain_field", type=str, help="Domain field for equi-proprotional selection", default=None)
parser.add_argument("-T", "--tokens", type=int, help="Tokens to select", default=5_000_000_000)
parser.add_argument('--temperature', type=float, default=1.0, help='temperature for logit sampling sampling')
parser.add_argument("--sample", action="store_true", help="Use metrics as logits and sample without replacement")
parser.add_argument("--normalize", action="store_true", help="Normalize metrics")
parser.add_argument("--select_bottom", action="store_true", help="Select bottom scores.")
parser.add_argument("--tokens_per_shard", type=int, help="Tokens per shard", default=500_000_000)
parser.add_argument("--shard_suffix", type=str, help="Suffix for shard names", default="")
parser.add_argument("--margin", type=float, default=0.1, help="Extra proportion for sampling enough data to deal with variable sequence lengths.")
parser.add_argument("--seed", type=int, default=42, help="Seed for random selection. NOTE: seed will also depend on folder name of dataset.")
parser.add_argument("-w", "--num_workers", type=int, default=None, help="Workers for saving.")
# parser.add_argument("--segmentwise_metric", action="store_true", help="Use segmentwise metric")
# parser.add_argument("--min_length", default=0, type=int, help="If document is post-processed.")
# parser.add_argument("--max_length", default=999999999999999999, type=int, help="If document is post-processed.")
args = parser.parse_args()
print("Arguments:", args)
main(args)