-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathqurater_annotate.py
189 lines (145 loc) · 7.26 KB
/
qurater_annotate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from datasets import load_from_disk, load_dataset, concatenate_datasets
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from modeling.modeling_flash_llama import LlamaForSequenceClassification
import torch
import argparse
import numpy as np
class TokenizeAndChunk:
def __init__(self, tokenizer_name, text_field, tokens_field, tokens):
self.tokens = tokens
self.tokenizer_name = tokenizer_name
self.text_field = text_field
self.tokens_field = tokens_field
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
self.tokenizer.pad_token_id = 0
def __getstate__(self):
return {
"tokenizer_name": self.tokenizer_name,
"text_field": self.text_field,
"tokens_field": self.tokens_field,
"tokens": self.tokens,
}
def __setstate__(self, state):
self.__init__(**state)
def tokenize_and_chunk(self, source_tokens):
chunks_token_ids = []
chunks_token_counts = []
for seq in source_tokens:
chunks = torch.tensor(seq, dtype=torch.long).split(self.tokens)
chunks_token_ids.append([chunk.tolist() for chunk in chunks])
chunks_token_counts.append([len(x) for x in chunks])
return chunks_token_ids, chunks_token_counts
def __call__(self, example):
if self.tokens_field in example:
source_tokens = example[self.tokens_field]
else:
source_tokens = self.tokenizer(example[self.text_field], truncation=False, padding=False, add_special_tokens=False).input_ids
chunks_token_ids, chunks_token_counts = self.tokenize_and_chunk(source_tokens)
assert len(example[self.text_field]) == len(chunks_token_ids)
assert len(example[self.text_field]) == len(chunks_token_counts)
return {
"chunks_token_ids": chunks_token_ids,
"chunks_token_counts": chunks_token_counts,
}
class ModelAnnotator:
def __init__(self, model_name, labels, device_batch_size):
self.model_name = model_name
self.labels = labels
self.device_batch_size = device_batch_size
self.model = LlamaForSequenceClassification.from_pretrained(
args.model,
torch_dtype=torch.bfloat16)
self.model.config.pad_token_id = 0
self.model.eval()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device {self.device}")
self.model.to(self.device)
self.num_labels = len(labels)
assert self.num_labels == self.model.config.num_labels, f"Number of labels ({self.num_labels}) does not match model config ({self.model.config.num_labels})"
def __getstate__(self):
return {
"model_name": self.model_name,
"labels": self.labels,
"device_batch_size": self.device_batch_size,
}
def __setstate__(self, state):
self.__init__(**state)
@torch.inference_mode()
def score_chunks(self, chunks_token_ids, chunks_token_counts):
sorted_indices = torch.argsort(chunks_token_counts)
scores = torch.zeros(len(chunks_token_ids), self.num_labels, dtype=torch.float32)
for batch_indices in sorted_indices.split(self.device_batch_size):
max_len = chunks_token_counts[batch_indices].max()
input_ids = torch.zeros((len(batch_indices), max_len), dtype=torch.long)
attention_mask = torch.zeros((len(batch_indices), max_len), dtype=torch.long)
for i, j in enumerate(batch_indices):
seq = chunks_token_ids[j]
input_ids[i, :len(seq)] = seq
attention_mask[i, :len(seq)] = 1
outputs = self.model(input_ids.to(self.device), attention_mask=attention_mask.to(self.device), use_cache=False)
scores[batch_indices] = outputs.logits.float().cpu()
return scores
def __call__(self, example, indices):
num_seqs = len(indices)
source_ids = [i for i, counts in enumerate(example["chunks_token_counts"]) for _ in range(len(counts))]
chunks_token_ids = [torch.tensor(chunk, dtype=torch.long) for chunks in example["chunks_token_ids"] for chunk in chunks]
flattened_chunks_token_counts = torch.tensor([chunk for chunks in example["chunks_token_counts"] for chunk in chunks], dtype=torch.long)
flattened_scores = self.score_chunks(chunks_token_ids, flattened_chunks_token_counts)
chunk_token_counts = example["chunks_token_counts"]
chunk_scores = [[[] for _ in range(num_seqs)] for _ in range(self.num_labels)]
for source_id, score in zip(source_ids, flattened_scores):
for label in range(self.num_labels):
chunk_scores[label][source_id].append(score[label].item())
output = {
"index": indices,
"chunk_lengths": chunk_token_counts,
"length": [sum(counts) for counts in chunk_token_counts],
}
for i, label in enumerate(self.labels):
output[f"{label}_chunks"] = chunk_scores[i]
output[f"{label}_average"] = [
np.average(scores, weights=token_counts).item()
for scores, token_counts in zip(chunk_scores[i], chunk_token_counts)
]
return output
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str)
parser.add_argument("output", type=str)
parser.add_argument("-F", "--data_files", type=str, nargs="+", default=[])
parser.add_argument("-S", "--shard", type=int, nargs=2, default=[0, 1])
parser.add_argument("-M", "--model", type=str, required=True)
parser.add_argument("-t", "--tokens", type=int, default=512)
parser.add_argument("--map_batch_size", type=int, default=512)
parser.add_argument("-b", "--device_batch_size", type=int, default=16)
parser.add_argument("-w", "--num_workers", type=int, default=1)
parser.add_argument("--text_field", type=str, default="text")
parser.add_argument("--tokens_field", type=str, default="input_ids")
parser.add_argument("--labels", type=str, nargs="+")
args = parser.parse_args()
print(args)
if args.input == "json":
dataset = load_dataset("json", data_files=args.data_files, split="train")
else:
dataset = load_from_disk(args.input)
src_dataset = dataset.shard(args.shard[1], args.shard[0], contiguous=True)
dataset = src_dataset
print(dataset)
print("Total number of examples:", len(dataset))
dataset = dataset.map(
TokenizeAndChunk(args.model, args.text_field, args.tokens_field, args.tokens),
batched=True,
batch_size=args.map_batch_size,
num_proc=args.num_workers,
remove_columns=dataset.column_names)
print("After tokenization: Total number of examples:", len(dataset))
dataset = dataset.map(
ModelAnnotator(args.model, args.labels, args.device_batch_size),
batched=True,
with_indices=True,
batch_size=args.map_batch_size,
remove_columns=dataset.column_names)
dataset = concatenate_datasets([dataset, src_dataset], axis=1)
print("After annotation: Total number of examples:", len(dataset))
print(f"Saving to {args.output}")
dataset.save_to_disk(args.output)