-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct_models.py
188 lines (147 loc) · 7.78 KB
/
construct_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import json
import glob
import pandas as pd
import pickle
from sklearn.model_selection import train_test_split
from models.transformers.feature_cleaner import Selector
from models.transformers.oversampler import Sampler
from models.classifiers.pcr import Transformer, LogClassifier
from models.classifiers.forest import ForestClassifier
from utils import plot_relationships
class Constructor:
def __init__(self, parameters):
"""
Class with methods to transform dataset, train and validate models
:param parameters: dictionary with parameters for models
"""
self.parameters = parameters
def make_data(self, plot=False):
"""
Select important features, oversample data, and split data into train and validation sets
:param plot: boolean, True for plotting features/target relationships
:return: data set split into train and validation parts
"""
data = pd.read_csv(self.parameters['dataset_file'])
# select best features
selector = Selector(target=self.parameters['target_name'],
n=self.parameters['select_with_method'])
X, y, selected = selector.select(data=data)
X = X.loc[:, selected.Feature[:self.parameters['select_overall']]]
# make oversampling
sampler = Sampler(sampling_strategy=self.parameters['sampling_strategy'],
k_neighbors=self.parameters['k_neighbors'],
random_state=self.parameters['random_state'])
X_smo, y_smo = sampler.transform(X, y)
# split into train/test and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_smo, y_smo,
stratify=y_smo,
random_state=self.parameters['random_state'])
if plot:
plot_relationships(data=pd.concat([X, y], axis=1),
target=self.parameters['target_name'])
return X_train, X_val, y_train, y_val
def transform(self, X, y):
"""
Transform data with PCA
:param X: array with molecule features and their values
:param y: array with target values
:return: fitted PCA transformer and transformed data set
"""
# apply PCA
transformer = Transformer(n=self.parameters['pc_components'])
transformed = pd.DataFrame(transformer.transform(X, y))
return transformer, transformed
def train_models(self, X_train, y_train):
"""
Train Random Forest and PCR classifiers models
:param X_train: array with molecule features and their values
:param y_train: array with target values
:return: scores for train and test data sets for all developed models,
trained models: PCA transformer, Logistic Regression model, and Random Forrest Classifier model
"""
transformer, transformed = self.transform(X=X_train,
y=y_train)
log_classifier = LogClassifier(class_weights={int(k): v
for k, v
in self.parameters['class_weights_log'].items()})
log_scores_train, log_scores_test = log_classifier.cross_validate(X=transformed,
y=y_train,
n_splits=self.parameters['n_splits'])
# apply Random Forest
forest_classifier = ForestClassifier(class_weight={int(k): v
for k, v
in self.parameters['class_weights_rf'].items()},
n_estimators=self.parameters['n_estimators'],
min_samples_leaf=self.parameters['min_samples_leaf'],
random_state=self.parameters['random_state'])
rf_scores_train, rf_scores_test = forest_classifier.cross_validate(X=X_train,
y=y_train,
n_splits=self.parameters['n_splits'])
scores = {'Log train': log_scores_train.T,
'Log test': log_scores_test.T,
'RF train': rf_scores_train.T,
'RF test': rf_scores_test.T}
models = transformer, log_classifier, forest_classifier
return scores, models
def validate_model(self, model_path, X_val, y_val):
"""
Validate model
:param model_path: path to the trained model file
:param X_val: array with molecule features and their values
:param y_val: array with target values
:return: classification report for model predictions on validation set
"""
with open(model_path, 'rb') as file:
model = pickle.load(file)
return model.validate(X_val, y_val)
def run(self, train, dump, validate):
"""
Method to run Constructor on given data set
:param train: boolean, True for training model
:param dump: boolean, True for saving trained model
:param validate: boolean, True for validating trained model
:return: depending on train, dump, and validate parameter values:
(train=True, dump=False, validate=False) - training/test scores for models
(train=True, dump=True, validate=False) - training/test scores for models + save trained models
(train=False, dump=False, validate=True) - classification report for trained models predictions
on validation set
"""
X_train, X_val, y_train, y_val = self.make_data()
_, transformed_val = self.transform(X_val, y_val)
if train and not dump:
scores, models = \
self.train_models(X_train, y_train)
return scores
elif train and dump:
scores, models = \
self.train_models(X_train, y_train)
for model in models:
model_name = type(model).__name__
if 'Transformer' in model_name:
with open(f"{self.parameters['trained_transformers']}/{model_name}.pkl", 'wb') as file:
pickle.dump(model, file)
continue
else:
with open(f"{self.parameters['trained_models']}/{model_name}.pkl", 'wb') as file:
pickle.dump(model, file)
continue
return scores
elif validate:
val_scores = {}
for model_path in glob.glob(self.parameters['trained_models']+'/*.pkl'):
model_name = model_path.split('/')[-1]
if 'Log' in model_name:
val_scores[model_name] = self.validate_model(model_path=model_path,
X_val=transformed_val,
y_val=y_val)
else:
val_scores[model_name] = self.validate_model(model_path=model_path,
X_val=X_val,
y_val=y_val)
return val_scores
if __name__ == "__main__":
target = 'inhibitorsB1'
constructor = Constructor(parameters=json.load(open('parameters.json', 'r'))[target])
scores = constructor.run(train=True,
dump=True,
validate=False)