-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiForests.py
228 lines (200 loc) · 6.85 KB
/
iForests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 8 19:24:59 2023
@author: premchand
"""
from collections import defaultdict
import io
import os
import matplotlib as mpl
from matplotlib import pyplot as plt
import numpy as np
import PIL
import sklearn.datasets
import sklearn.preprocessing
import graphviz
n_points = 22
n_inliers = 10
n_outliers = 1
centers = [[2, 2], [-2, -2]]
cluster_std = [1, 1.5]
plots_dir = "./plots/"
def mkdirs(path):
import os, errno
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
class iTree_Node():
def __init__(self, parent, XX, features, indices, random_state):
super().__init__()
vmin = XX.min(axis=0)
vmax = XX.max(axis=0)
diff = vmax - vmin
test = diff > 0
if not np.any(test):
split_index = None
split_value = None
else:
split_index = random_state.choice(indices[test])
split_value = random_state.uniform(
low=vmin[split_index],
high=vmax[split_index]
)
self.parent = parent
self.features = features
self.vmin = vmin
self.vmax = vmax
self.split_index = split_index
self.split_value = split_value
self.count = len(XX)
if split_index is None:
self.left = None
self.right = None
else:
self.left = iTree_Node(
self,
XX=XX[XX[:,split_index] <= split_value],
features=features,
indices=indices,
random_state=random_state
)
self.right = iTree_Node(
self,
XX=XX[XX[:,split_index] > split_value],
features=features,
indices=indices,
random_state=random_state
)
def __str__(self):
if self.parent is None:
return f"Root ({self.count})"
else:
compare = "<=" if self.parent.left == self else ">"
feature = self.features[self.parent.split_index]
threshold = self.parent.split_value
count = self.count
return f"{feature} {compare} {threshold} ({count})"
def __hash__(self):
return id(self)
class iTree():
def __init__(self, XX, features=None, random_state=None):
super().__init__()
XX = np.asarray(XX)
feature_indices = np.arange(XX.shape[1])
if features is None:
features = feature_indices
features = np.asarray(features)
assert(XX.shape[1] == len(features))
self.features = features
self.root = iTree_Node(None, XX, features, feature_indices, random_state)
def _traverse(self, node, tree):
if node.split_index is not None:
tree.setdefault(node, []).append(node.left)
self._traverse(node.left, tree)
tree.setdefault(node, []).append(node.right)
self._traverse(node.right, tree)
def _print_tree(self, output, parent, grandparent, tree, prefix, indent_width=2):
output.write(str(parent) + "\n")
if parent in tree:
for ii,child in enumerate(tree[parent],1):
if ii != len(tree[parent]):
s1, s2 = u"\u2560", u"\u2551"
else:
s1, s2 = u"\u255A", " "
s3 = u"\u2550" if tree.get(child) == None else u"\u2566"
output.write(u"{}{}{}{}".format(prefix, s1, u"\u2550" * indent_width, s3))
new_prefix = u"{}{}{}".format(prefix, s2, " " * indent_width)
self._print_tree(output, child, parent, tree, new_prefix, indent_width)
def __str__(self):
tree = {}
self._traverse(i_tree.root, tree)
output = io.StringIO()
self._print_tree(
output=output,
parent=i_tree.root,
grandparent=None,
tree=tree,
prefix="",
)
return output.getvalue()
def iTree2Digraph(i_tree, hidden=set(), node_attrs=dict()):
def _traverse(node):
if node.split_index is not None:
parent = hex(id(node))
attrs = dict(
label=f"{node.features[node.split_index]}",
color="white" if parent in hidden else "black",
fontcolor="white" if parent in hidden else "black"
)
attrs.update(node_attrs.get(parent, dict()))
graph.node(parent, **attrs)
left = hex(id(node.left))
attrs = dict(
label=f"<= {node.split_value:0.2f}",
color="white" if parent in hidden or left in hidden else "black",
fontcolor="white" if parent in hidden or left in hidden else "black"
)
graph.edge(parent, left, **attrs)
_traverse(node.left)
right = hex(id(node.right))
attrs = dict(
label=f"> {node.split_value:0.2f}",
color="white" if parent in hidden or right in hidden else "black",
fontcolor="white" if parent in hidden or right in hidden else "black",
)
graph.edge(parent, right, **attrs)
_traverse(node.right)
else:
parent = hex(id(node))
attrs = dict(
label=f"{node.count}",
color="white" if parent in hidden else "black",
fontcolor="white" if parent in hidden else "black"
)
attrs.update(node_attrs.get(parent, dict()))
graph.node(parent, **attrs)
graph = graphviz.Digraph()
_traverse(i_tree.root)
return graph
random = np.random.RandomState(0)
X_inliers, y_inliers = sklearn.datasets.make_blobs(
n_samples=n_inliers,
n_features=2,
centers=centers,
cluster_std=cluster_std,
random_state=random
)
X_outliers = random.uniform(size=(n_outliers,2))
X_extra, y_extra = sklearn.datasets.make_blobs(
n_samples=n_points,
n_features=2,
centers=centers,
cluster_std=cluster_std,
random_state=42
)
X_full = np.vstack([
sklearn.preprocessing.MinMaxScaler((0.25,0.75)).fit_transform(X_extra),
sklearn.preprocessing.MinMaxScaler((0.25,0.75)).fit_transform(X_inliers),
sklearn.preprocessing.MinMaxScaler((0.1,0.9)).fit_transform(X_outliers),
])
X_sample = X_full[n_points:]
print(X_full.shape)
print(X_sample.shape)
fig,ax = plt.subplots(figsize=(16,10))
ax.scatter(*X_full.T, marker=".")
ax.set_xlim(0,1)
ax.set_ylim(0,1)
ax.set_xlabel("$x_{1}$")
ax.set_ylabel("$x_{2}$")
ax.set_aspect("equal")
plt.show()
fig,ax = plt.subplots(figsize=(16,10))
ax.scatter(*X_sample.T, marker=".")
ax.set_xlim(0,1)
ax.set_ylim(0,1)
ax.set_xlabel("$x_{1}$")
ax.set_ylabel("$x_{2}$")
ax.set_aspect("equal")
plt.show()