-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfinal_model.py
54 lines (38 loc) · 1.73 KB
/
final_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
## MODEL
model=Sequential()
# EMBEDDING LAYER - DISTRIBUTED REPRESENTATION OF TWEETS
# EMBEDDINGS - GLOVE 100 dimensions further trained on davidson and heot dataset after proper preprocessing
# EMBEDDING DIMENSION = 100
model.add(Embedding(len(vocab)+1, EMBEDDING_DIMENSION, weights=[embedding], input_length=sequence_length, name='embedding_layer'))
# Dropout Layer to reduce overfitting
model.add(Dropout(0.4))
# LSTM Layer (2 LSTM layers preferable) - Units : 64
model.add(LSTM(64,dropout_W=0.2,dropout_U=0.2))
#Series of dense layers
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(3, activation='softmax',name='last'))
# Compiling Model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# ONE HOT ENCODING - for traing and testing data and transfer learning
Y_train = np_utils.to_categorical(Y_train, num_classes=3)
Y_test = np_utils.to_categorical(Y_test, num_classes=3)
Y_transfer_learning_train=np_utils.to_categorical(Y_transfer_learning_train,num_classes=3)
Y_transfer_learning_test=np_utils.to_categorical(Y_transfer_learning_test,num_classes=3)
# Training Model
model.fit(X_train,Y_train,epochs=25,batch_size=128)
# TRANSFER LEARNING
# Make previous layers non trainable
for layer in model.layers:
layer.trainable=False
# Remove last two layers
model.layers.pop()
model.layers.pop()
# Add two dense layers
model.add(Dense(80, activation='relu'))
model.add(Dense(3,activation='softmax',name='last_transfer_learning'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
# Train model again
model.fit(X_transfer_learning_train,Y_transfer_learning_train,epochs=25,batch_size=128)