-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
64 lines (45 loc) · 1.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from model import Classifier
from data_loader import read_file_names,get_raw_data,preprocess,DataLoader
import gensim.models as gs
def train(model,dataloader,epochs):
optimizer=optim.Adam(model.parameters(),lr=0.01)
lossFunction=nn.CrossEntropyLoss()
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
loss=0
training_loss=0
for _ in range(500):
x,y=dataloader.load_next_batch(True)
logits=model(x)
loss+=lossFunction(logits,y)
training_loss+=loss.item()
loss.backward()
optimizer.step()
model.eval()
vl=0
acc=0
for _ in range(20):
x,y=dataloader.load_next_batch(False)
logits=model(x)
lossv=lossFunction(logits,y)
vl+=lossv.item()
_,indices=torch.max(F.softmax(logits,dim=1),dim=1)
indices+=1
acc+=int(torch.sum(indices==y))
print('epoch=',epoch+1,'training loss=',training_loss/500,'validation loss=',vl/20,'validation accuracy=',acc*5)
kernel_size=2
embedding_size=50
hidden_size=100
epochs=200
filenames=read_file_names()
x_train,y_train=get_raw_data(filenames)
x_train,_=preprocess(x_train)
word_dict=gs.Word2Vec(x_train,min_count=1,size=embedding_size)
Model=Classifier(embedding_size,hidden_size,kernel_size)
dataLoader=DataLoader(x_train,y_train,word_dict)
train(Model,dataLoader,epochs)