This repository has been archived by the owner on Feb 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSearch.java
116 lines (93 loc) · 4.61 KB
/
Search.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/// Author: Ashwin Venkatesh Prabhu
/// UNCC ID: 800960400
/// Email: avenka11@uncc.edu
package org.myorg;
import java.io.IOException;
import java.util.List;
import java.util.Scanner;
import java.util.regex.Pattern;
import java.lang.*;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.util.GenericOptionsParser;
/// Search.java will search for certain keyword passed as queries and output their
/// TFIDF values. The input for this program is the output fo TFIDF and the output
/// is stored in the path OUTPUT_PATH/search
public class Search extends Configured implements Tool {
private static final Logger LOG = Logger .getLogger( Search.class);
/// main() method is the starting point of the program
public static void main( String[] args) throws Exception {
int res = ToolRunner .run( new Search(), args);
System .exit(res);
}
/// run() method is responsible for defining a job object. In this case, it sets the input
/// path and the output path. It sets the mapper and reducer classes, and the datatypes for
/// Output Key/Value pair which is Text/DoubleWritable respectively.
/// Queries passed as command line arguments are extracted and passed as string to
/// map/reduce functions, where each query is separated by a whitespace
public int run( String[] args) throws Exception {
Job job = Job .getInstance(getConf(), " search ");
job.setJarByClass( this .getClass());
FileInputFormat.addInputPaths(job, args[0]);
FileOutputFormat.setOutputPath(job, new Path(args[ 1] + "/search"));
job.setMapperClass( Map .class);
job.setReducerClass( Reduce .class);
job.setOutputKeyClass( Text .class);
job.setOutputValueClass( DoubleWritable .class);
String queries = "";
for (int i = 2; i < args.length; i++) {
queries += args[i] + " ";
}
job.getConfiguration().set("queries", queries);
return job.waitForCompletion( true) ? 0 : 1;
}
/// This is the Mapper class which hosts the map function. Here, the input is taken from the
/// input path (Output of TFIDF calculation) specified and is processed and passed to reduce function
public static class Map extends Mapper<LongWritable , Text , Text , DoubleWritable > {
public void map( LongWritable offset, Text lineText, Context context)
throws IOException, InterruptedException {
/// Queries to be search for are extracted and split using whitespace delimiter
String[] queries = context.getConfiguration().get("queries").toString().split(" ");
for (String q : queries) {
/// Checks if the query is present in the line text
if (lineText.toString().contains(q)) {
/// If the query is present, then the line is split of the delimiter '#####"
/// After the split, we get 'word' and 'filename tfidf_value'
String[] word_value = lineText.toString().split("#####");
/// 'filename tfidf_value' are also split
String[] filename_tfidf = word_value[1].toString().split("\\b(\\s*\\t+)\\b");
/// filename is converted to Text and tfidf_value is converted to DoubleWritable
/// and passed to reduce function
context.write(new Text(filename_tfidf[0]), new DoubleWritable(Double.parseDouble(filename_tfidf[1])));
}
}
}
}
/// This is the Reducer class which hosts the reduce function. Here, the input is received
/// from the map function, and the output is stored into the path specified
public static class Reduce extends Reducer<Text , DoubleWritable , Text , DoubleWritable > {
@Override
public void reduce( Text word, Iterable<DoubleWritable > counts, Context context)
throws IOException, InterruptedException {
double sum = 0.0;
/// Take sum of all the tfidf values for all the files where the word appears
for (DoubleWritable count : counts ) {
sum += count.get();
}
/// The output is generated as word tfidf_sum
context.write(word, new DoubleWritable(sum));
}
}
}