-
Notifications
You must be signed in to change notification settings - Fork 206
/
PVRTDecompress.cpp
757 lines (653 loc) · 26.7 KB
/
PVRTDecompress.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/*!
\brief Implementation of the Texture Decompression functions.
\file PVRCore/texture/PVRTDecompress.cpp
\author PowerVR by Imagination, Developer Technology Team
\copyright Copyright (c) Imagination Technologies Limited.
*/
//!\cond NO_DOXYGEN
#include <cstdlib>
#include <cstdio>
#include <climits>
#include <cmath>
#include <algorithm>
#include <cstring>
#include "PVRTDecompress.h"
#include <cassert>
#include <vector>
namespace pvr {
enum
{
ETC_MIN_TEXWIDTH = 4,
ETC_MIN_TEXHEIGHT = 4,
DXT_MIN_TEXWIDTH = 4,
DXT_MIN_TEXHEIGHT = 4,
};
struct Pixel32
{
uint8_t red, green, blue, alpha;
};
struct Pixel128S
{
int32_t red, green, blue, alpha;
};
struct PVRTCWord
{
uint32_t modulationData;
uint32_t colorData;
};
struct PVRTCWordIndices
{
int P[2], Q[2], R[2], S[2];
};
static Pixel32 getColorA(uint32_t colorData)
{
Pixel32 color;
// Opaque Color Mode - RGB 554
if ((colorData & 0x8000) != 0)
{
color.red = static_cast<uint8_t>((colorData & 0x7c00) >> 10); // 5->5 bits
color.green = static_cast<uint8_t>((colorData & 0x3e0) >> 5); // 5->5 bits
color.blue = static_cast<uint8_t>(colorData & 0x1e) | ((colorData & 0x1e) >> 4); // 4->5 bits
color.alpha = static_cast<uint8_t>(0xf); // 0->4 bits
}
// Transparent Color Mode - ARGB 3443
else
{
color.red = static_cast<uint8_t>((colorData & 0xf00) >> 7) | ((colorData & 0xf00) >> 11); // 4->5 bits
color.green = static_cast<uint8_t>((colorData & 0xf0) >> 3) | ((colorData & 0xf0) >> 7); // 4->5 bits
color.blue = static_cast<uint8_t>((colorData & 0xe) << 1) | ((colorData & 0xe) >> 2); // 3->5 bits
color.alpha = static_cast<uint8_t>((colorData & 0x7000) >> 11); // 3->4 bits - note 0 at right
}
return color;
}
static Pixel32 getColorB(uint32_t colorData)
{
Pixel32 color;
// Opaque Color Mode - RGB 555
if (colorData & 0x80000000)
{
color.red = static_cast<uint8_t>((colorData & 0x7c000000) >> 26); // 5->5 bits
color.green = static_cast<uint8_t>((colorData & 0x3e00000) >> 21); // 5->5 bits
color.blue = static_cast<uint8_t>((colorData & 0x1f0000) >> 16); // 5->5 bits
color.alpha = static_cast<uint8_t>(0xf); // 0 bits
}
// Transparent Color Mode - ARGB 3444
else
{
color.red = static_cast<uint8_t>(((colorData & 0xf000000) >> 23) | ((colorData & 0xf000000) >> 27)); // 4->5 bits
color.green = static_cast<uint8_t>(((colorData & 0xf00000) >> 19) | ((colorData & 0xf00000) >> 23)); // 4->5 bits
color.blue = static_cast<uint8_t>(((colorData & 0xf0000) >> 15) | ((colorData & 0xf0000) >> 19)); // 4->5 bits
color.alpha = static_cast<uint8_t>((colorData & 0x70000000) >> 27); // 3->4 bits - note 0 at right
}
return color;
}
static void interpolateColors(Pixel32 P, Pixel32 Q, Pixel32 R, Pixel32 S, Pixel128S* pPixel, uint8_t bpp)
{
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
// Convert to int 32.
Pixel128S hP = { static_cast<int32_t>(P.red), static_cast<int32_t>(P.green), static_cast<int32_t>(P.blue), static_cast<int32_t>(P.alpha) };
Pixel128S hQ = { static_cast<int32_t>(Q.red), static_cast<int32_t>(Q.green), static_cast<int32_t>(Q.blue), static_cast<int32_t>(Q.alpha) };
Pixel128S hR = { static_cast<int32_t>(R.red), static_cast<int32_t>(R.green), static_cast<int32_t>(R.blue), static_cast<int32_t>(R.alpha) };
Pixel128S hS = { static_cast<int32_t>(S.red), static_cast<int32_t>(S.green), static_cast<int32_t>(S.blue), static_cast<int32_t>(S.alpha) };
// Get vectors.
Pixel128S QminusP = { hQ.red - hP.red, hQ.green - hP.green, hQ.blue - hP.blue, hQ.alpha - hP.alpha };
Pixel128S SminusR = { hS.red - hR.red, hS.green - hR.green, hS.blue - hR.blue, hS.alpha - hR.alpha };
// Multiply colors.
hP.red *= wordWidth;
hP.green *= wordWidth;
hP.blue *= wordWidth;
hP.alpha *= wordWidth;
hR.red *= wordWidth;
hR.green *= wordWidth;
hR.blue *= wordWidth;
hR.alpha *= wordWidth;
if (bpp == 2)
{
// Loop through pixels to achieve results.
for (uint32_t x = 0; x < wordWidth; x++)
{
Pixel128S result = { 4 * hP.red, 4 * hP.green, 4 * hP.blue, 4 * hP.alpha };
Pixel128S dY = { hR.red - hP.red, hR.green - hP.green, hR.blue - hP.blue, hR.alpha - hP.alpha };
for (uint32_t y = 0; y < wordHeight; y++)
{
pPixel[y * wordWidth + x].red = static_cast<int32_t>((result.red >> 7) + (result.red >> 2));
pPixel[y * wordWidth + x].green = static_cast<int32_t>((result.green >> 7) + (result.green >> 2));
pPixel[y * wordWidth + x].blue = static_cast<int32_t>((result.blue >> 7) + (result.blue >> 2));
pPixel[y * wordWidth + x].alpha = static_cast<int32_t>((result.alpha >> 5) + (result.alpha >> 1));
result.red += dY.red;
result.green += dY.green;
result.blue += dY.blue;
result.alpha += dY.alpha;
}
hP.red += QminusP.red;
hP.green += QminusP.green;
hP.blue += QminusP.blue;
hP.alpha += QminusP.alpha;
hR.red += SminusR.red;
hR.green += SminusR.green;
hR.blue += SminusR.blue;
hR.alpha += SminusR.alpha;
}
}
else
{
// Loop through pixels to achieve results.
for (uint32_t y = 0; y < wordHeight; y++)
{
Pixel128S result = { 4 * hP.red, 4 * hP.green, 4 * hP.blue, 4 * hP.alpha };
Pixel128S dY = { hR.red - hP.red, hR.green - hP.green, hR.blue - hP.blue, hR.alpha - hP.alpha };
for (uint32_t x = 0; x < wordWidth; x++)
{
pPixel[y * wordWidth + x].red = static_cast<int32_t>((result.red >> 6) + (result.red >> 1));
pPixel[y * wordWidth + x].green = static_cast<int32_t>((result.green >> 6) + (result.green >> 1));
pPixel[y * wordWidth + x].blue = static_cast<int32_t>((result.blue >> 6) + (result.blue >> 1));
pPixel[y * wordWidth + x].alpha = static_cast<int32_t>((result.alpha >> 4) + (result.alpha));
result.red += dY.red;
result.green += dY.green;
result.blue += dY.blue;
result.alpha += dY.alpha;
}
hP.red += QminusP.red;
hP.green += QminusP.green;
hP.blue += QminusP.blue;
hP.alpha += QminusP.alpha;
hR.red += SminusR.red;
hR.green += SminusR.green;
hR.blue += SminusR.blue;
hR.alpha += SminusR.alpha;
}
}
}
static void unpackModulations(const PVRTCWord& word, int32_t offsetX, int32_t offsetY, int32_t modulationValues[16][8], int32_t modulationModes[16][8], uint8_t bpp)
{
uint32_t WordModMode = word.colorData & 0x1;
uint32_t ModulationBits = word.modulationData;
// Unpack differently depending on 2bpp or 4bpp modes.
if (bpp == 2)
{
if (WordModMode)
{
// determine which of the three modes are in use:
// If this is the either the H-only or V-only interpolation mode...
if (ModulationBits & 0x1)
{
// look at the "LSB" for the "centre" (V=2,H=4) texel. Its LSB is now
// actually used to indicate whether it's the H-only mode or the V-only...
// The centre texel data is the at (y==2, x==4) and so its LSB is at bit 20.
if (ModulationBits & (0x1 << 20))
{
// This is the V-only mode
WordModMode = 3;
}
else
{
// This is the H-only mode
WordModMode = 2;
}
// Create an extra bit for the centre pixel so that it looks like
// we have 2 actual bits for this texel. It makes later coding much easier.
if (ModulationBits & (0x1 << 21))
{
// set it to produce code for 1.0
ModulationBits |= (0x1 << 20);
}
else
{
// clear it to produce 0.0 code
ModulationBits &= ~(0x1 << 20);
}
} // end if H-Only or V-Only interpolation mode was chosen
if (ModulationBits & 0x2) { ModulationBits |= 0x1; /*set it*/ }
else
{
ModulationBits &= ~0x1; /*clear it*/
}
// run through all the pixels in the block. Note we can now treat all the
// "stored" values as if they have 2bits (even when they didn't!)
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 8; x++)
{
modulationModes[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = WordModMode;
// if this is a stored value...
if (((x ^ y) & 1) == 0) {modulationValues[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = ModulationBits & 3;
ModulationBits >>= 2;
}
}
} // end for y
}
// else if direct encoded 2bit mode - i.e. 1 mode bit per pixel
else
{
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 8; x++)
{
modulationModes[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = WordModMode;
/*
// double the bits so 0=> 00, and 1=>11
*/
if (ModulationBits & 1) { modulationValues[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = 0x3; }
else
{
modulationValues[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = 0x0;
}
ModulationBits >>= 1;
}
} // end for y
}
}
else
{
// Much simpler than the 2bpp decompression, only two modes, so the n/8 values are set directly.
// run through all the pixels in the word.
if (WordModMode)
{
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 4; x++)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = ModulationBits & 3;
// if (modulationValues==0) {}. We don't need to check 0, 0 = 0/8.
if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] == 1)
{ modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = 4; }
else if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] == 2)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = 14; //+10 tells the decompressor to punch through alpha.
}
else if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] == 3)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = 8;
}
ModulationBits >>= 2;
} // end for x
} // end for y
}
else
{
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 4; x++)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = ModulationBits & 3;
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] *= 3;
if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] > 3)
{ modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] -= 1; }
ModulationBits >>= 2;
} // end for x
} // end for y
}
}
}
static int32_t getModulationValues(int32_t modulationValues[16][8], int32_t modulationModes[16][8], uint32_t xPos, uint32_t yPos, uint8_t bpp)
{
if (bpp == 2)
{
const int32_t RepVals0[4] = { 0, 3, 5, 8 };
// extract the modulation value. If a simple encoding
if (modulationModes[xPos][yPos] == 0) { return RepVals0[modulationValues[xPos][yPos]]; }
else
{
// if this is a stored value
if (((xPos ^ yPos) & 1) == 0) { return RepVals0[modulationValues[xPos][yPos]]; }
// else average from the neighbours
// if H&V interpolation...
else if (modulationModes[xPos][yPos] == 1)
{
return (RepVals0[modulationValues[xPos][yPos - 1]] + RepVals0[modulationValues[xPos][yPos + 1]] + RepVals0[modulationValues[xPos - 1][yPos]] +
RepVals0[modulationValues[xPos + 1][yPos]] + 2) /
4;
}
// else if H-Only
else if (modulationModes[xPos][yPos] == 2)
{
return (RepVals0[modulationValues[xPos - 1][yPos]] + RepVals0[modulationValues[xPos + 1][yPos]] + 1) / 2;
}
// else it's V-Only
else
{
return (RepVals0[modulationValues[xPos][yPos - 1]] + RepVals0[modulationValues[xPos][yPos + 1]] + 1) / 2;
}
}
}
else if (bpp == 4)
{
return modulationValues[xPos][yPos];
}
return 0;
}
static void pvrtcGetDecompressedPixels(const PVRTCWord& P, const PVRTCWord& Q, const PVRTCWord& R, const PVRTCWord& S, Pixel32* pColorData, uint8_t bpp)
{
// 4bpp only needs 8*8 values, but 2bpp needs 16*8, so rather than wasting processor time we just statically allocate 16*8.
int32_t modulationValues[16][8];
// Only 2bpp needs this.
int32_t modulationModes[16][8];
// 4bpp only needs 16 values, but 2bpp needs 32, so rather than wasting processor time we just statically allocate 32.
Pixel128S upscaledColorA[32];
Pixel128S upscaledColorB[32];
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
// Get the modulations from each word.
unpackModulations(P, 0, 0, modulationValues, modulationModes, bpp);
unpackModulations(Q, wordWidth, 0, modulationValues, modulationModes, bpp);
unpackModulations(R, 0, wordHeight, modulationValues, modulationModes, bpp);
unpackModulations(S, wordWidth, wordHeight, modulationValues, modulationModes, bpp);
// Bilinear upscale image data from 2x2 -> 4x4
interpolateColors(getColorA(P.colorData), getColorA(Q.colorData), getColorA(R.colorData), getColorA(S.colorData), upscaledColorA, bpp);
interpolateColors(getColorB(P.colorData), getColorB(Q.colorData), getColorB(R.colorData), getColorB(S.colorData), upscaledColorB, bpp);
for (uint32_t y = 0; y < wordHeight; y++)
{
for (uint32_t x = 0; x < wordWidth; x++)
{
int32_t mod = getModulationValues(modulationValues, modulationModes, x + wordWidth / 2, y + wordHeight / 2, bpp);
bool punchthroughAlpha = false;
if (mod > 10)
{
punchthroughAlpha = true;
mod -= 10;
}
Pixel128S result;
result.red = (upscaledColorA[y * wordWidth + x].red * (8 - mod) + upscaledColorB[y * wordWidth + x].red * mod) / 8;
result.green = (upscaledColorA[y * wordWidth + x].green * (8 - mod) + upscaledColorB[y * wordWidth + x].green * mod) / 8;
result.blue = (upscaledColorA[y * wordWidth + x].blue * (8 - mod) + upscaledColorB[y * wordWidth + x].blue * mod) / 8;
if (punchthroughAlpha) { result.alpha = 0; }
else
{
result.alpha = (upscaledColorA[y * wordWidth + x].alpha * (8 - mod) + upscaledColorB[y * wordWidth + x].alpha * mod) / 8;
}
// Convert the 32bit precision Result to 8 bit per channel color.
if (bpp == 2)
{
pColorData[y * wordWidth + x].red = static_cast<uint8_t>(result.red);
pColorData[y * wordWidth + x].green = static_cast<uint8_t>(result.green);
pColorData[y * wordWidth + x].blue = static_cast<uint8_t>(result.blue);
pColorData[y * wordWidth + x].alpha = static_cast<uint8_t>(result.alpha);
}
else if (bpp == 4)
{
pColorData[y + x * wordHeight].red = static_cast<uint8_t>(result.red);
pColorData[y + x * wordHeight].green = static_cast<uint8_t>(result.green);
pColorData[y + x * wordHeight].blue = static_cast<uint8_t>(result.blue);
pColorData[y + x * wordHeight].alpha = static_cast<uint8_t>(result.alpha);
}
}
}
}
static uint32_t wrapWordIndex(uint32_t numWords, int word) { return ((word + numWords) % numWords); }
static bool isPowerOf2(uint32_t input)
{
uint32_t minus1;
if (!input) { return 0; }
minus1 = input - 1;
return ((input | minus1) == (input ^ minus1));
}
static uint32_t TwiddleUV(uint32_t XSize, uint32_t YSize, uint32_t XPos, uint32_t YPos)
{
// Initially assume X is the larger size.
uint32_t MinDimension = XSize;
uint32_t MaxValue = YPos;
uint32_t Twiddled = 0;
uint32_t SrcBitPos = 1;
uint32_t DstBitPos = 1;
int ShiftCount = 0;
// Check the sizes are valid.
assert(YPos < YSize);
assert(XPos < XSize);
assert(isPowerOf2(YSize));
assert(isPowerOf2(XSize));
// If Y is the larger dimension - switch the min/max values.
if (YSize < XSize)
{
MinDimension = YSize;
MaxValue = XPos;
}
// Step through all the bits in the "minimum" dimension
while (SrcBitPos < MinDimension)
{
if (YPos & SrcBitPos) { Twiddled |= DstBitPos; }
if (XPos & SrcBitPos) { Twiddled |= (DstBitPos << 1); }
SrcBitPos <<= 1;
DstBitPos <<= 2;
ShiftCount += 1;
}
// Prepend any unused bits
MaxValue >>= ShiftCount;
Twiddled |= (MaxValue << (2 * ShiftCount));
return Twiddled;
}
static void mapDecompressedData(Pixel32* pOutput, uint32_t width, const Pixel32* pWord, const PVRTCWordIndices& words, uint8_t bpp)
{
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
for (uint32_t y = 0; y < wordHeight / 2; y++)
{
for (uint32_t x = 0; x < wordWidth / 2; x++)
{
pOutput[(((words.P[1] * wordHeight) + y + wordHeight / 2) * width + words.P[0] * wordWidth + x + wordWidth / 2)] = pWord[y * wordWidth + x]; // map P
pOutput[(((words.Q[1] * wordHeight) + y + wordHeight / 2) * width + words.Q[0] * wordWidth + x)] = pWord[y * wordWidth + x + wordWidth / 2]; // map Q
pOutput[(((words.R[1] * wordHeight) + y) * width + words.R[0] * wordWidth + x + wordWidth / 2)] = pWord[(y + wordHeight / 2) * wordWidth + x]; // map R
pOutput[(((words.S[1] * wordHeight) + y) * width + words.S[0] * wordWidth + x)] = pWord[(y + wordHeight / 2) * wordWidth + x + wordWidth / 2]; // map S
}
}
}
static uint32_t pvrtcDecompress(uint8_t* pCompressedData, Pixel32* pDecompressedData, uint32_t width, uint32_t height, uint8_t bpp)
{
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
uint32_t* pWordMembers = (uint32_t*)pCompressedData;
Pixel32* pOutData = pDecompressedData;
// Calculate number of words
int i32NumXWords = static_cast<int>(width / wordWidth);
int i32NumYWords = static_cast<int>(height / wordHeight);
// Structs used for decompression
PVRTCWordIndices indices;
std::vector<Pixel32> pPixels(wordWidth * wordHeight * sizeof(Pixel32));
// For each row of words
for (int32_t wordY = -1; wordY < i32NumYWords - 1; wordY++)
{
// for each column of words
for (int32_t wordX = -1; wordX < i32NumXWords - 1; wordX++)
{
indices.P[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX));
indices.P[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY));
indices.Q[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX + 1));
indices.Q[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY));
indices.R[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX));
indices.R[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY + 1));
indices.S[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX + 1));
indices.S[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY + 1));
// Work out the offsets into the twiddle structs, multiply by two as there are two members per word.
uint32_t WordOffsets[4] = {
TwiddleUV(i32NumXWords, i32NumYWords, indices.P[0], indices.P[1]) * 2,
TwiddleUV(i32NumXWords, i32NumYWords, indices.Q[0], indices.Q[1]) * 2,
TwiddleUV(i32NumXWords, i32NumYWords, indices.R[0], indices.R[1]) * 2,
TwiddleUV(i32NumXWords, i32NumYWords, indices.S[0], indices.S[1]) * 2,
};
// Access individual elements to fill out PVRTCWord
PVRTCWord P, Q, R, S;
P.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[0] + 1]);
P.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[0]]);
Q.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[1] + 1]);
Q.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[1]]);
R.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[2] + 1]);
R.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[2]]);
S.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[3] + 1]);
S.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[3]]);
// assemble 4 words into struct to get decompressed pixels from
pvrtcGetDecompressedPixels(P, Q, R, S, pPixels.data(), bpp);
mapDecompressedData(pOutData, width, pPixels.data(), indices, bpp);
} // for each word
} // for each row of words
// Return the data size
return width * height / static_cast<uint32_t>((wordWidth / 2));
}
uint32_t PVRTDecompressPVRTC(const void* pCompressedData, uint32_t Do2bitMode, uint32_t XDim, uint32_t YDim, uint8_t* pResultImage)
{
// Cast the output buffer to a Pixel32 pointer.
Pixel32* pDecompressedData = (Pixel32*)pResultImage;
// Check the X and Y values are at least the minimum size.
uint32_t XTrueDim = std::max(XDim, ((Do2bitMode == 1u) ? 16u : 8u));
uint32_t YTrueDim = std::max(YDim, 8u);
// If the dimensions aren't correct, we need to create a new buffer instead of just using the provided one, as the buffer will overrun otherwise.
if (XTrueDim != XDim || YTrueDim != YDim) { pDecompressedData = new Pixel32[XTrueDim * YTrueDim]; }
// Decompress the surface.
uint32_t retval = pvrtcDecompress((uint8_t*)pCompressedData, pDecompressedData, XTrueDim, YTrueDim, uint8_t(Do2bitMode == 1 ? 2 : 4));
// If the dimensions were too small, then copy the new buffer back into the output buffer.
if (XTrueDim != XDim || YTrueDim != YDim)
{
// Loop through all the required pixels.
for (uint32_t x = 0; x < XDim; ++x)
{
for (uint32_t y = 0; y < YDim; ++y) { ((Pixel32*)pResultImage)[x + y * XDim] = pDecompressedData[x + y * XTrueDim]; }
}
// Free the temporary buffer.
delete[] pDecompressedData;
}
return retval;
}
////////////////////////////////////// ETC Compression //////////////////////////////////////
#define _CLAMP_(X, Xmin, Xmax) ((X) < (Xmax) ? ((X) < (Xmin) ? (Xmin) : (X)) : (Xmax))
uint32_t ETC_FLIP = 0x01000000;
uint32_t ETC_DIFF = 0x02000000;
const int mod[8][4] = { { 2, 8, -2, -8 }, { 5, 17, -5, -17 }, { 9, 29, -9, -29 }, { 13, 42, -13, -42 }, { 18, 60, -18, -60 }, { 24, 80, -24, -80 }, { 33, 106, -33, -106 },
{ 47, 183, -47, -183 } };
static uint32_t modifyPixel(int red, int green, int blue, int x, int y, uint32_t modBlock, int modTable)
{
int index = x * 4 + y, pixelMod;
uint32_t mostSig = modBlock << 1;
if (index < 8) { pixelMod = mod[modTable][((modBlock >> (index + 24)) & 0x1) + ((mostSig >> (index + 8)) & 0x2)]; }
else
{
pixelMod = mod[modTable][((modBlock >> (index + 8)) & 0x1) + ((mostSig >> (index - 8)) & 0x2)];
}
red = _CLAMP_(red + pixelMod, 0, 255);
green = _CLAMP_(green + pixelMod, 0, 255);
blue = _CLAMP_(blue + pixelMod, 0, 255);
return ((red << 16) + (green << 8) + blue) | 0xff000000;
}
static uint32_t ETCTextureDecompress(const void* pSrcData, uint32_t x, uint32_t y, void* pDestData, uint32_t /*nMode*/)
{
uint32_t* output;
uint32_t blockTop, blockBot;
const uint32_t* input = static_cast<const uint32_t*>(pSrcData);
unsigned char red1, green1, blue1, red2, green2, blue2;
bool bFlip, bDiff;
int modtable1, modtable2;
for (uint32_t i = 0; i < y; i += 4)
{
for (uint32_t m = 0; m < x; m += 4)
{
blockTop = *(input++);
blockBot = *(input++);
output = (uint32_t*)pDestData + i * x + m;
// check flipbit
bFlip = (blockTop & ETC_FLIP) != 0;
bDiff = (blockTop & ETC_DIFF) != 0;
if (bDiff)
{
// differential mode 5 color bits + 3 difference bits
// get base color for subblock 1
blue1 = static_cast<unsigned char>((blockTop & 0xf80000) >> 16u);
green1 = static_cast<unsigned char>((blockTop & 0xf800) >> 8u);
red1 = static_cast<unsigned char>(blockTop & 0xf8);
// get differential color for subblock 2
signed char blues = static_cast<signed char>(blue1 >> 3) + (static_cast<signed char>((blockTop & 0x70000) >> 11) >> 5);
signed char greens = static_cast<signed char>(green1 >> 3) + (static_cast<signed char>((blockTop & 0x700) >> 3) >> 5);
signed char reds = static_cast<signed char>(red1 >> 3) + (static_cast<signed char>((blockTop & 0x7) << 5) >> 5);
blue2 = static_cast<unsigned char>(blues);
green2 = static_cast<unsigned char>(greens);
red2 = static_cast<unsigned char>(reds);
red1 = static_cast<unsigned char>(red1 + (red1 >> 5u)); // copy bits to lower sig
green1 = static_cast<unsigned char>(green1 + (green1 >> 5u)); // copy bits to lower sig
blue1 = static_cast<unsigned char>(blue1 + (blue1 >> 5u)); // copy bits to lower sig
red2 = static_cast<unsigned char>((red2 << 3u) + (red2 >> 2u)); // copy bits to lower sig
green2 = static_cast<unsigned char>((green2 << 3u) + (green2 >> 2u)); // copy bits to lower sig
blue2 = static_cast<unsigned char>((blue2 << 3u) + (blue2 >> 2u)); // copy bits to lower sig
}
else
{
// individual mode 4 + 4 color bits
// get base color for subblock 1
blue1 = static_cast<unsigned char>((blockTop & 0xf00000) >> 16);
blue1 = static_cast<unsigned char>(blue1 + (blue1 >> 4)); // copy bits to lower sig
green1 = static_cast<unsigned char>((blockTop & 0xf000) >> 8);
green1 = static_cast<unsigned char>(green1 + (green1 >> 4)); // copy bits to lower sig
red1 = static_cast<unsigned char>(blockTop & 0xf0);
red1 = static_cast<unsigned char>(red1 + (red1 >> 4)); // copy bits to lower sig
// get base color for subblock 2
blue2 = static_cast<unsigned char>((blockTop & 0xf0000) >> 12);
blue2 = static_cast<unsigned char>(blue2 + (blue2 >> 4)); // copy bits to lower sig
green2 = static_cast<unsigned char>((blockTop & 0xf00) >> 4);
green2 = static_cast<unsigned char>(green2 + (green2 >> 4)); // copy bits to lower sig
red2 = static_cast<unsigned char>((blockTop & 0xf) << 4);
red2 = static_cast<unsigned char>(red2 + (red2 >> 4)); // copy bits to lower sig
}
// get the modtables for each subblock
modtable1 = static_cast<int>((blockTop >> 29) & 0x7);
modtable2 = static_cast<int>((blockTop >> 26) & 0x7);
if (!bFlip)
{
// 2 2x4 blocks side by side
for (uint8_t j = 0; j < 4; j++) // vertical
{
for (uint8_t k = 0; k < 2; k++) // horizontal
{
*(output + j * x + k) = modifyPixel(red1, green1, blue1, k, j, blockBot, modtable1);
*(output + j * x + k + 2) = modifyPixel(red2, green2, blue2, k + 2, j, blockBot, modtable2);
}
}
}
else
{
// 2 4x2 blocks on top of each other
for (uint8_t j = 0; j < 2; j++)
{
for (uint8_t k = 0; k < 4; k++)
{
*(output + j * x + k) = modifyPixel(red1, green1, blue1, k, j, blockBot, modtable1);
*(output + (j + 2) * x + k) = modifyPixel(red2, green2, blue2, k, j + 2, blockBot, modtable2);
}
}
}
}
}
return x * y / 2;
}
uint32_t PVRTDecompressETC(const void* pSrcData, uint32_t x, uint32_t y, void* pDestData, uint32_t nMode)
{
uint32_t i32read;
if (x < ETC_MIN_TEXWIDTH || y < ETC_MIN_TEXHEIGHT)
{
// decompress into a buffer big enough to take the minimum size
char* pTempBuffer = new char[std::max<uint32_t>(x, ETC_MIN_TEXWIDTH) * std::max<uint32_t>(y, ETC_MIN_TEXHEIGHT) * 4];
i32read = ETCTextureDecompress(pSrcData, std::max<uint32_t>(x, ETC_MIN_TEXWIDTH), std::max<uint32_t>(y, ETC_MIN_TEXHEIGHT), pTempBuffer, nMode);
for (uint32_t i = 0; i < y; i++)
{
// copy from larger temp buffer to output data
memcpy(static_cast<char*>(pDestData) + i * x * 4, pTempBuffer + std::max<uint32_t>(x, ETC_MIN_TEXWIDTH) * 4 * i, x * 4);
}
delete[] pTempBuffer;
}
else // decompress larger MIP levels straight into the output data
{
i32read = ETCTextureDecompress(pSrcData, x, y, pDestData, nMode);
}
// swap r and b channels
unsigned char *pSwap = static_cast<unsigned char*>(pDestData), swap;
for (uint32_t i = 0; i < y; i++)
for (uint32_t j = 0; j < x; j++)
{
swap = pSwap[0];
pSwap[0] = pSwap[2];
pSwap[2] = swap;
pSwap += 4;
}
return i32read;
}
} // namespace pvr
//!\endcond