forked from UX-Decoder/DINOv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_openset.py
140 lines (106 loc) · 4.71 KB
/
demo_openset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# --------------------------------------------------------
# Semantic-SAM: Segment and Recognize Anything at Any Granularity
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Hao Zhang (hzhangcx@connect.ust.hk)
# --------------------------------------------------------
# Copyright (c) 2024 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Feng Li (fliay@connect.ust.hk)
# --------------------------------------------------------
import gradio as gr
import torch
import argparse
from dinov.BaseModel import BaseModel
from dinov import build_model
from utils.arguments import load_opt_from_config_file
from demo import task_openset
def parse_option():
parser = argparse.ArgumentParser('DINOv Demo', add_help=False)
parser.add_argument('--conf_files', default="configs/dinov_sam_coco_swinl_train.yaml", metavar="FILE", help='path to config file', )
parser.add_argument('--ckpt', default="", metavar="FILE", help='path to ckpt', required=True)
parser.add_argument('--port', default=6099, type=int, help='path to ckpt', )
args = parser.parse_args()
return args
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
return super().preprocess(x)
'''
build args
'''
args = parse_option()
'''
build model
'''
sam_cfg=args.conf_files
opt = load_opt_from_config_file(sam_cfg)
model_sam = BaseModel(opt, build_model(opt)).from_pretrained(args.ckpt).eval().cuda()
@torch.no_grad()
def inference(generic_vp1, generic_vp2, generic_vp3, generic_vp4,
generic_vp5, generic_vp6, generic_vp7, generic_vp8, image2,*args, **kwargs):
with torch.autocast(device_type='cuda', dtype=torch.float16):
model=model_sam
a= task_openset(model, generic_vp1, generic_vp2, generic_vp3, generic_vp4,
generic_vp5, generic_vp6, generic_vp7, generic_vp8, image2, *args, **kwargs)
return a
'''
launch app
'''
title = "DINOv: Visual In-Context Prompting"
article = "The Demo is Run on DINOv."
demo = gr.Blocks()
image_tgt=gr.components.Image(label="Target Image ",type="pil",brush_radius=15.0)
gallery_output=gr.components.Image(label="Results Image ",type="pil",brush_radius=15.0)
generic_vp1 = ImageMask(label="scribble on refer Image 1",type="pil",brush_radius=15.0)
generic_vp2 = ImageMask(label="scribble on refer Image 2",type="pil",brush_radius=15.0)
generic_vp3 = ImageMask(label="scribble on refer Image 3",type="pil",brush_radius=15.0)
generic_vp4 = ImageMask(label="scribble on refer Image 5",type="pil",brush_radius=15.0)
generic_vp5 = ImageMask(label="scribble on refer Image 6",type="pil",brush_radius=15.0)
generic_vp6 = ImageMask(label="scribble on refer Image 7",type="pil",brush_radius=15.0)
generic_vp7 = ImageMask(label="scribble on refer Image 8",type="pil",brush_radius=15.0)
generic_vp8 = ImageMask(label="scribble on refer Image 9",type="pil",brush_radius=15.0)
generic = gr.TabbedInterface([
generic_vp1, generic_vp2, generic_vp3, generic_vp4,
generic_vp5, generic_vp6, generic_vp7, generic_vp8
], ["1", "2", "3", "4", "5", "6", "7", "8"])
title='''
# DINOv: Visual In-Context Prompting
# [[Read our arXiv Paper](https://arxiv.org/pdf/2311.13601.pdf)\] \[[Github page](https://github.com/UX-Decoder/DINOv)\]
'''
with demo:
with gr.Row():
with gr.Column(scale=3.0):
generation_tittle = gr.Markdown(title)
image_tgt.render()
generic.render()
with gr.Row(scale=2.0):
clearBtn = gr.ClearButton(
components=[image_tgt])
runBtn = gr.Button("Run")
with gr.Column(scale=5.0):
gallery_tittle = gr.Markdown("# Open-set results.")
with gr.Row(scale=9.0):
gallery_output.render()
example = gr.Examples(
examples=[
["demo/examples/bags.jpg"],
["demo/examples/img.png"],
["demo/examples/corgi2.jpg"],
["demo/examples/ref_cat.jpeg"],
],
inputs=image_tgt,
cache_examples=False,
)
title = title,
article = article,
allow_flagging = 'never',
runBtn.click(inference, inputs=[generic_vp1, generic_vp2, generic_vp3, generic_vp4,
generic_vp5, generic_vp6, generic_vp7, generic_vp8, image_tgt],
outputs = [gallery_output])
demo.queue().launch(share=True,server_port=args.port)