-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
283 lines (228 loc) · 8.64 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
import os
import tensorflow as tf
import time
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from sklearn.model_selection import train_test_split
import concurrent.futures
from tqdm import tqdm
class DataGenerator2(tf.keras.utils.Sequence):
def __init__(self, path, y, batch_size):
self.idx = np.arange(len(os.listdir(path)))
self.path = path
self.y = y
self.batch_size = batch_size
def __len__(self):
return int(np.ceil(len(self.idx) / float(self.batch_size)))
def __getitem__(self, iter):
batch_i = self.idx[iter * self.batch_size:(iter + 1) * self.batch_size]
batch_y = self.y[iter * self.batch_size:(iter + 1) * self.batch_size]
batch_x = []
with concurrent.futures.ThreadPoolExecutor(10) as pool:
futures = [
pool.submit(np.load, os.path.join(self.path,str(i)+".npy"))
for i in batch_i
]
concurrent.futures.wait(futures)
batch_x = np.array([future.result() for future in futures], np.float32)
return batch_x, batch_y
class DataGenerator(tf.keras.utils.Sequence):
def __init__(self, x_set, y_set, batch_size):
self.x = x_set
self.y = y_set
self.batch_size = batch_size
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, iter):
batch_x = self.x[iter * self.batch_size:(iter + 1) * self.batch_size]
batch_y = self.y[iter * self.batch_size:(iter + 1) * self.batch_size]
return batch_x, batch_y
class Dataset():
def __init__(
self,
base_model,
name="SCUT-FBP5500",
image_path="SCUT-FBP5500/images",
train_path="SCUT-FBP5500/train.txt",
test_path="SCUT-FBP5500/test.txt",
batch_size=32,
load_all=True,
output_size=5,
zero_center=True,
):
self.name = name
self.image_path = image_path
self.batch_size = batch_size
self.load_all = load_all
self.output_size = output_size
self.zero_center = zero_center
self.train_lines = self.path_to_lines(train_path)
self.test_lines = self.path_to_lines(test_path)
self.mean = 0
self.var = 0
self.std = 1
self.feature_path = None
self.mlp_train = False
self.base_model = base_model
def path_to_lines(self, path):
with open(path, "r") as f:
return f.readlines()
@property
def mlp_train(self):
return self._mlp_train
@mlp_train.setter
def mlp_train(self, mlp_train):
self._mlp_train = mlp_train
if mlp_train:
self.feature_path = os.path.join(self.feature_path,"mlp")
elif self.feature_path:
self.feature_path = self.feature_path_copy
@property
def base_model(self):
return self._base_model
@base_model.setter
def base_model(self, model):
self._base_model = model
self.update_feature_path()
def check_paths(self):
return np.array([os.path.exists(
os.path.join(self.feature_path,name))
for name in ["X_train","X_test"]
]).all()
def check_lines(self, lines):
files = []
lines2 = []
for l in lines:
file = l.split(" ")[0]
if os.path.exists(os.path.join(
self.image_path, file
)):
lines2.append(l)
files.append(file)
return lines2, files
def update_feature_path(self):
self.feature_path = os.path.join(
self.base_model._name,
"features",
self.name
)
if not self.mlp_train:
self.feature_path_copy = self.feature_path
if not os.path.exists(self.feature_path):
os.makedirs(self.feature_path)
self.create_generators()
def load_y(self, name):
path = os.path.join(self.feature_path,"y_"+name+".npy")
return np.load(path)
def create_generators(self):
self.train_lines, self.train_files = self.check_lines(self.train_lines)
self.test_lines, self.test_files = self.check_lines(self.test_lines)
if self.zero_center:
print("Calculating mean and standard deviation of training set")
self.normalise(self.train_lines)
y_train = self.create_y(self.train_lines)
y_test = self.create_y(self.test_lines)
if self.load_all:
t0 = time.process_time()
X_train = self.create_x(self.train_files)
t1 = time.process_time()
print(f"Training set loaded in {t1-t0}s")
self.train = DataGenerator(X_train, y_train, self.batch_size)
t0 = time.process_time()
X_test = self.create_x(self.test_files)
t1 = time.process_time()
print(f"Testing set loaded in {t1-t0}s")
self.test = DataGenerator(X_test, y_test, self.batch_size)
return
if not self.check_paths():
print("Creating training set")
self.create_dataset("train", self.train_files)
print("Creating testing set")
self.create_dataset("test", self.test_files)
self.train = DataGenerator2(
os.path.join(self.feature_path,"X_train"),
y_train,
self.batch_size
)
self.test = DataGenerator2(
os.path.join(self.feature_path,"X_test"),
y_test,
self.batch_size
)
def load_image(self, file):
return img_to_array(load_img(
os.path.join(self.image_path,file),
target_size=(
self.base_model.input_shape[1],
self.base_model.input_shape[2]
),
interpolation="lanczos"
))
def normalise(self, lines):
path = os.path.join(self.image_path,"zero.npy")
if not os.path.exists(path):
files = [l.split(" ")[0] for l in lines]
self.mean = np.zeros(3)
self.var = np.zeros(3)
for file in tqdm(files):
image = self.load_image(file)
self.mean += np.array([
np.mean(image[...,0]),
np.mean(image[...,1]),
np.mean(image[...,2]),
])
self.mean /= len(lines)
for file in tqdm(files):
image = self.load_image(file)
self.var += np.array([
np.mean((image[...,0] - self.mean[0])**2),
np.mean((image[...,1] - self.mean[1])**2),
np.mean((image[...,2] - self.mean[2])**2),
])
self.var /= len(lines)
self.std = np.sqrt(self.var)
np.save(path, np.array([self.mean, self.std]))
s = np.load(path)
self.mean = s[0]
self.var = s[1]**2
self.std = s[1]
def create_y(self, lines):
if self.output_size == 1:
y = [l.split(" ")[6:7] for l in lines]
elif self.output_size == 5:
y = [l.split(" ")[1:6] for l in lines]
elif self.output_size == 10:
y = [l.split(" ")[1:11] for l in lines]
return np.array(y, np.float32)
def preprocess(self, x):
x = x[...,::-1] #convert to BGR
x -= self.mean #zero center
if self.base_model._name == "vgg16": x = x / self.std #if VGG16 divide by std
x = self.base_model.predict(x, batch_size=self.batch_size, verbose=0)
return x
def create_x(self, files):
with concurrent.futures.ThreadPoolExecutor(10) as pool:
futures = [pool.submit(self.load_image, file) for file in files]
concurrent.futures.wait(futures)
x = np.array([future.result() for future in futures], np.float32)
x = self.preprocess(x)
return x
def create_dataset(self, name, files):
x = []
path = os.path.join(self.feature_path,"X_"+name)
if not os.path.exists(path):
os.makedirs(path)
x = self.create_x(files[:len(files)//2])
for i in tqdm(range(len(files)//2)):
np.save(os.path.join(
path,
str(i)+".npy"),
x[i]
)
x = self.create_x(files[len(files)//2:])
for i in tqdm(range(len(files)//2)):
np.save(os.path.join(
path,
str((len(files)//2)+i)+".npy"),
x[i]
)