-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions_only_save.py
300 lines (244 loc) · 10.2 KB
/
functions_only_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import requests
from matplotlib.pyplot import imshow
import time
from PIL import Image, ImageDraw
import face_recognition
import pandas as pd
import numpy as np
from os.path import basename
import math
import pathlib
from pathlib import Path
import os
import random
from sklearn.preprocessing import normalize
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
image_dir = "data/pics" #celebrity search version
def distance(p1,p2):
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return math.sqrt(dx*dx+dy*dy)
def scale_rotate_translate(image, angle, center = None, new_center = None, scale = None, resample=Image.BICUBIC):
if (scale is None) and (center is None):
return image.rotate(angle=angle, resample=resample)
nx,ny = x,y = center
sx=sy=1.0
if new_center:
(nx,ny) = new_center
if scale:
(sx,sy) = (scale, scale)
cosine = math.cos(angle)
sine = math.sin(angle)
a = cosine/sx
b = sine/sx
c = x-nx*a-ny*b
d = -sine/sy
e = cosine/sy
f = y-nx*d-ny*e
return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample)
def crop_face(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.3,0.3), dest_sz = (600,600)):
# calculate offsets in original image
offset_h = math.floor(float(offset_pct[0])*dest_sz[0])
offset_v = math.floor(float(offset_pct[1])*dest_sz[1])
# get the direction
eye_direction = (eye_right[0] - eye_left[0], eye_right[1] - eye_left[1])
# calc rotation angle in radians
rotation = -math.atan2(float(eye_direction[1]),float(eye_direction[0]))
# distance between them
dist = distance(eye_left, eye_right)
# calculate the reference eye-width
reference = dest_sz[0] - 2.0*offset_h
# scale factor
scale = float(dist)/float(reference)
# rotate original around the left eye
image = scale_rotate_translate(image, center=eye_left, angle=rotation)
# crop the rotated image
crop_xy = (eye_left[0] - scale*offset_h, eye_left[1] - scale*offset_v)
crop_size = (dest_sz[0]*scale, dest_sz[1]*scale)
image = image.crop((int(crop_xy[0]), int(crop_xy[1]), int(crop_xy[0]+crop_size[0]), int(crop_xy[1]+crop_size[1])))
# resize it
image = image.resize(dest_sz, Image.ANTIALIAS)
return image
def make_face_df_save(image_select,filenum,df):
# This function looks at one image, draws points and saves points to DF
pts = []
# filenum = 0 # need this to iterate through the dataframe to append rows
face = 0
image = face_recognition.load_image_file(image_select)
face_landmarks_list = face_recognition.face_landmarks(image)
for face_landmarks in face_landmarks_list:
face += 1
if face >1: # this will only measure one face per image
break
else:
# Print the location of each facial feature in this image
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
]
for facial_feature in facial_features:
# put each point in a COLUMN
for point in face_landmarks[facial_feature]:
for pix in point:
pts.append(pix)
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)
eyes = []
lex = pts[72]
ley = pts[73]
rex = pts[90]
rey = pts[91]
eyes.append(pts[72:74])
eyes.append(pts[90:92])
image = Image.open(image_select)
crop_image = crop_face(image, eye_left=(lex, ley), eye_right=(rex, rey), offset_pct=(0.34,0.34), dest_sz=(300,300))
try:
crop_image.save(str(image_select)+"_NEW_cropped.jpg")
except:
continue
#crop_image.show()
nn = str(image_select)+"_NEW_cropped.jpg"
pts = []
face = 0
image = face_recognition.load_image_file(nn)
face_landmarks_list = face_recognition.face_landmarks(image)
for face_landmarks in face_landmarks_list:
face += 1
if face >1: # this will only measure one face per image
break
else:
# Print the location of each facial feature in this image
facial_features2 = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
]
for facial_feature in facial_features2:
# put each point in a COLUMN
for point in face_landmarks[facial_feature]:
for pix in point:
pts.append(pix)
i = 0
for j in range(0,17):
if i != 16:
if i != 17:
px = pts[i]
py = pts[i+1]
chin_x = pts[16] # always the chin x
chin_y = pts[17] # always the chin y
x_diff = float(px - chin_x)
if(py == chin_y):
y_diff = 0.1
if(py < chin_y):
y_diff = float(np.absolute(py-chin_y))
if(py > chin_y):
y_diff = 0.1
print("Error: facial feature is located below the chin.")
angle = np.absolute(math.degrees(math.atan(x_diff/y_diff)))
pts.append(angle)
i += 2
pil_image = Image.fromarray(image)
d = ImageDraw.Draw(pil_image)
for facial_feature in facial_features2:
#d.line(face_landmarks[facial_feature], width=5)
d.point(face_landmarks[facial_feature], fill = (255,255,255))
pil_image.save(str(image_select) + '_NEW_rotated_pts.jpg', 'JPEG', quality = 100)
# take_measurements width & height measurements
msmt = []
a = pts[0] ## point 1 x - left side of face
b = pts[1] ## point 1 y
c = pts[32] ## point 17 x - right side of face
d = pts[33] ## point 17 y
e = pts[16] ## point 9 x - chin
f = pts[17] ## point 9 y - chin
#Visual inspection indicates that point 29 is the middle of the face,
#so the height of the face is 2X the height between chin & point 29 which are coordinates 56 and 57
g = pts[56] # point 29's x coordinate (mid-face point)
h = pts[57] # point 29's y coordinate
i = pts[12] # point 7 x for jaw length
j = pts[13] # point 7 y for jaw length
k = pts[20] # point 11 x for jaw length
l = pts[21] # point 11 y for jaw length
m = pts[8] # point 5 x for lower jaw length
n = pts[9] # point 5 y
o = pts[24] # point 13 x
p = pts[25] # point 13 y
face_width = np.sqrt(np.square(a - c) + np.square(b - d))
#print(face_width)
pts.append(face_width)
face_height = np.sqrt(np.square(e - g) + np.square(f - h)) * 2 # double the height to the mid-point
#print(face_height)
pts.append(face_height)
height_to_width = face_height/face_width
pts.append(height_to_width)
# JAW width (7-11)
jaw_width = np.sqrt(np.square(i-k) + np.square(j-l))
pts.append(jaw_width)
jaw_width_to_face_width = jaw_width/face_width
pts.append(jaw_width_to_face_width)
# mid-JAW width (5-13)
mid_jaw_width = np.sqrt(np.square(m-o) + np.square(n-p))
pts.append(mid_jaw_width)
mid_jaw_width_to_jaw_width = mid_jaw_width/jaw_width
pts.append(mid_jaw_width_to_jaw_width)
### end of new ###
df.loc[filenum] = np.array(pts)
#imshow(pil_image, cmap='gray')
def find_face_shape(df,file_num):
data = pd.read_csv('all_features.csv',index_col = None)
data = data.drop('Unnamed: 0',axis = 1)
data_clean = data.dropna(axis=0, how='any')
X = data_clean
X = X.drop(['filenum','filename','classified_shape'] , axis = 1)
X_norm = normalize(X)
Y = data_clean['classified_shape']
scaler = StandardScaler()
scaler.fit(X)
X = scaler.transform(X)
### Split into train/test sets
X_train, X_test, Y_train, Y_test = train_test_split(
X,Y,
test_size=0.25,
random_state=1200)
### Apply PCA for dimension reduction
n_components = 18
pca = PCA(n_components=n_components, svd_solver='randomized',
whiten=True).fit(X)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
# #Remove PCA
X_train_pca = X_train
X_test_pca = X_test
## Neural Network (MLP)
from sklearn.neural_network import MLPClassifier
# With best model tuning
best_mlp = MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(60, 100, 30, 100), learning_rate='constant',
learning_rate_init=0.01, max_iter=100, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=525,
shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False)
best_mlp.fit(X_train_pca, Y_train)
mlp_score = best_mlp.score(X_test_pca,Y_test)
y_pred = best_mlp.predict(X_test_pca)
mlp_crosstab = pd.crosstab(Y_test, y_pred, margins=True)
test_row = df.loc[file_num].values.reshape(1,-1)
test_row = scaler.transform(test_row)
test_shape = best_mlp.predict(test_row)
return test_shape