-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy pathmorphsnakes_v1.py
414 lines (329 loc) · 12.6 KB
/
morphsnakes_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
"""
morphsnakes
===========
This is a Python implementation of the algorithms introduced in the paper
Márquez-Neila, P., Baumela, L., Álvarez, L., "A morphological approach
to curvature-based evolution of curves and surfaces". IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 2013.
This implementation is intended to be as brief, understandable and self-contained
as possible. It does not include any enhancement to make it fast or efficient.
Any practical implementation of this algorithm should work only over the
neighbor pixels of the 0.5-levelset, not over all the embedding function,
and perhaps should feature multi-threading or GPU capabilities.
The classes MorphGAC and MorphACWE provide most of the functionality of this
module. They implement the Morphological Geodesic Active Contours and the
Morphological Active Contours without Edges, respectively. See the
aforementioned paper for full details.
See test.py for examples of usage.
"""
__author__ = "P. Márquez Neila <p.mneila@upm.es>"
import os
import logging
from itertools import cycle
import matplotlib
# in case you are running on machine without display, e.g. server
if os.environ.get('DISPLAY', '') == '':
logging.warning('No display found. Using non-interactive Agg backend.')
matplotlib.use('Agg')
import numpy as np
from matplotlib import pyplot as plt
from scipy.ndimage import binary_dilation, binary_erosion
from scipy.ndimage import gaussian_filter, gaussian_gradient_magnitude
class FCycle(object):
def __init__(self, iterable):
"""Call functions from the iterable each time it is called."""
self.funcs = cycle(iterable)
def __call__(self, *args, **kwargs):
f = next(self.funcs)
return f(*args, **kwargs)
# operator_si and operator_is operators for 2D and 3D.
_P2 = [np.eye(3), np.array([[0, 1, 0]] * 3),
np.flipud(np.eye(3)), np.rot90([[0, 1, 0]] * 3)]
_P3 = [np.zeros((3, 3, 3)) for i in range(9)]
_P3[0][:, :, 1] = 1
_P3[1][:, 1, :] = 1
_P3[2][1, :, :] = 1
_P3[3][:, [0, 1, 2], [0, 1, 2]] = 1
_P3[4][:, [0, 1, 2], [2, 1, 0]] = 1
_P3[5][[0, 1, 2], :, [0, 1, 2]] = 1
_P3[6][[0, 1, 2], :, [2, 1, 0]] = 1
_P3[7][[0, 1, 2], [0, 1, 2], :] = 1
_P3[8][[0, 1, 2], [2, 1, 0], :] = 1
_aux = np.zeros((0))
def operator_si(u):
"""operator_si operator."""
global _aux
if np.ndim(u) == 2:
P = _P2
elif np.ndim(u) == 3:
P = _P3
else:
raise ValueError("u has an invalid number of dimensions "
"(should be 2 or 3)")
if u.shape != _aux.shape[1:]:
_aux = np.zeros((len(P),) + u.shape)
for _aux_i, P_i in zip(_aux, P):
_aux_i[:] = binary_erosion(u, P_i)
return _aux.max(0)
def operator_is(u):
"""operator_is operator."""
global _aux
if np.ndim(u) == 2:
P = _P2
elif np.ndim(u) == 3:
P = _P3
else:
raise ValueError("u has an invalid number of dimensions "
"(should be 2 or 3)")
if u.shape != _aux.shape[1:]:
_aux = np.zeros((len(P),) + u.shape)
for _aux_i, P_i in zip(_aux, P):
_aux_i[:] = binary_dilation(u, P_i)
return _aux.min(0)
# operator_si_o_is operator.
operator_si_o_is = lambda u: operator_si(operator_is(u))
operator_os_o_si = lambda u: operator_is(operator_si(u))
curvop = FCycle([operator_si_o_is, operator_os_o_si])
# Stopping factors (function g(I) in the paper).
def gborders(img, alpha=1.0, sigma=1.0):
"""Stopping criterion for image borders."""
# The norm of the gradient.
gradnorm = gaussian_gradient_magnitude(img, sigma, mode='constant')
return 1.0/np.sqrt(1.0 + alpha*gradnorm)
def glines(img, sigma=1.0):
"""Stopping criterion for image black lines."""
return gaussian_filter(img, sigma)
class MorphACWE(object):
"""Morphological ACWE based on the Chan-Vese energy functional."""
def __init__(self, data, smoothing=1, lambda1=1, lambda2=1):
"""Create a Morphological ACWE solver.
Parameters
----------
data : ndarray
The image data.
smoothing : scalar
The number of repetitions of the smoothing step (the
curv operator) in each iteration. In other terms,
this is the strength of the smoothing. This is the
parameter µ.
lambda1, lambda2 : scalars
Relative importance of the inside pixels (lambda1)
against the outside pixels (lambda2).
"""
self._u = None
self.smoothing = smoothing
self.lambda1 = lambda1
self.lambda2 = lambda2
self.data = data
def set_levelset(self, u):
self._u = np.double(u)
self._u[u>0] = 1
self._u[u<=0] = 0
levelset = property(lambda self: self._u,
set_levelset,
doc="The level set embedding function (u).")
def step(self):
"""Perform a single step of the morphological Chan-Vese evolution."""
# Assign attributes to local variables for convenience.
u = self._u
if u is None:
raise ValueError("the levelset function is not set "
"(use set_levelset)")
data = self.data
# Determine c0 and c1.
inside = (u > 0)
outside = (u <= 0)
c0 = data[outside].sum() / float(outside.sum())
c1 = data[inside].sum() / float(inside.sum())
# Image attachment.
dres = np.array(np.gradient(u))
abs_dres = np.abs(dres).sum(0)
#aux = abs_dres * (c0 - c1) * (c0 + c1 - 2*data)
aux = abs_dres * (self.lambda1*(data - c1) ** 2 -
self.lambda2*(data - c0) ** 2)
res = np.copy(u)
res[aux < 0] = 1
res[aux > 0] = 0
# Smoothing.
for i in range(self.smoothing):
res = curvop(res)
self._u = res
def run(self, nb_iters):
"""Run several nb_iters of the morphological Chan-Vese method."""
for _ in range(nb_iters):
self.step()
class MorphGAC(object):
"""Morphological GAC based on the Geodesic Active Contours."""
def __init__(self, data, smoothing=1, threshold=0, balloon=0):
"""Create a Morphological GAC solver.
Parameters
----------
data : array-like
The stopping criterion g(I). See functions gborders and glines.
smoothing : scalar
The number of repetitions of the smoothing step in each
iteration. This is the parameter µ.
threshold : scalar
The threshold that determines which areas are affected
by the morphological balloon. This is the parameter θ.
balloon : scalar
The strength of the morphological balloon. This is the parameter ν.
"""
self._u = None
self._v = balloon
self._theta = threshold
self.smoothing = smoothing
self.set_data(data)
def set_levelset(self, u):
self._u = np.double(u)
self._u[u>0] = 1
self._u[u<=0] = 0
def set_balloon(self, v):
self._v = v
self._update_mask()
def set_threshold(self, theta):
self._theta = theta
self._update_mask()
def set_data(self, data):
self._data = data
self._ddata = np.gradient(data)
self._update_mask()
# The structure element for binary dilation and erosion.
self.structure = np.ones((3,)*np.ndim(data))
def _update_mask(self):
"""Pre-compute masks for speed."""
self._threshold_mask = self._data > self._theta
self._threshold_mask_v = self._data > self._theta/np.abs(self._v)
levelset = property(lambda self: self._u,
set_levelset,
doc="The level set embedding function (u).")
data = property(lambda self: self._data,
set_data,
doc="The data that controls the snake evolution "
"(the image or g(I)).")
balloon = property(lambda self: self._v,
set_balloon,
doc="The morphological balloon parameter "
"(ν (nu, not v)).")
threshold = property(lambda self: self._theta,
set_threshold,
doc="The threshold value (θ).")
def step(self):
"""Perform a single step of the morphological snake evolution."""
# Assign attributes to local variables for convenience.
u = self._u
gI = self._data
dgI = self._ddata
theta = self._theta
v = self._v
if u is None:
raise ValueError("the levelset is not set (use set_levelset)")
res = np.copy(u)
# Balloon.
if v > 0:
aux = binary_dilation(u, self.structure)
elif v < 0:
aux = binary_erosion(u, self.structure)
if v!= 0:
res[self._threshold_mask_v] = aux[self._threshold_mask_v]
# Image attachment.
aux = np.zeros_like(res)
dres = np.gradient(res)
for el1, el2 in zip(dgI, dres):
aux += el1*el2
res[aux > 0] = 1
res[aux < 0] = 0
# Smoothing.
for i in range(self.smoothing):
res = curvop(res)
self._u = res
def run(self, iterations):
"""Run several iterations of the morphological snakes method."""
for _ in range(iterations):
self.step()
def evolve_visual(msnake, fig=None, levelset=None, num_iters=20, background=None):
"""
Visual evolution of a morphological snake.
Parameters
----------
msnake : MorphGAC or MorphACWE instance
The morphological snake solver.
fig: object, optional
Handles to actual figure.
levelset : array-like, optional
If given, the levelset of the solver is initialized to this. If not
given, the evolution will use the levelset already set in msnake.
num_iters : int, optional
The number of iterations.
background : array-like, optional
If given, background will be shown behind the contours instead of
msnake.data.
"""
if levelset is not None:
msnake.levelset = levelset
# Prepare the visual environment.
if fig is None:
fig = plt.figure()
fig.clf()
ax1 = fig.add_subplot(1, 2, 1)
if background is None:
ax1.imshow(msnake.data, cmap=plt.cm.gray)
else:
ax1.imshow(background, cmap=plt.cm.gray)
ax1.contour(msnake.levelset, [0.5], colors='r')
ax2 = fig.add_subplot(1, 2, 2)
ax_u = ax2.imshow(msnake.levelset)
plt.pause(0.001)
# Iterate.
for _ in range(num_iters):
# Evolve.
msnake.step()
# Update figure.
del ax1.collections[0]
ax1.contour(msnake.levelset, [0.5], colors='r')
ax_u.set_data(msnake.levelset)
fig.canvas.draw()
#plt.pause(0.001)
# Return the last levelset.
return msnake.levelset
def evolve_visual3d(msnake, fig=None, levelset=None, num_iters=20,
animate_ui=True, animate_delay=250):
"""
Visual evolution of a three-dimensional morphological snake.
Parameters
----------
msnake : MorphGAC or MorphACWE instance
The morphological snake solver.
fig: object, optional
Handles to actual figure.
levelset : array-like, optional
If given, the levelset of the solver is initialized to this. If not
given, the evolution will use the levelset already set in msnake.
num_iters : int, optional
The number of iterations.
animate_ui : bool, optional
Show the animation interface
animate_delay : int, optional
The number of delay between frames.
"""
from mayavi import mlab
if levelset is not None:
msnake.levelset = levelset
if fig is None:
fig = mlab.gcf()
mlab.clf()
src = mlab.pipeline.scalar_field(msnake.data)
mlab.pipeline.image_plane_widget(src, plane_orientation='x_axes', colormap='gray')
cnt = mlab.contour3d(msnake.levelset, contours=[0.5])
@mlab.animate(ui=animate_ui, delay=animate_delay)
def anim():
for i in range(num_iters):
msnake.step()
cnt.mlab_source.scalars = msnake.levelset
print("Iteration %i/%i..." % (i + 1, num_iters))
yield
anim()
mlab.show()
# Return the last levelset.
return msnake.levelset