-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
304 lines (229 loc) · 7.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import json
import os
import threading
import time
import numpy as np
import tensorflow as tf
import PIL.Image
import piexif
import piexif.helper
from agent import simple
def stringify_dict(d):
newd = {}
for k, v in d.iteritems():
if isinstance(v, unicode):
v = str(v)
newd[str(k)] = v
return newd
def saver_restore(saver, cp_dir, sess):
cp_state = tf.train.get_checkpoint_state(
cp_dir,
latest_filename=None)
paths = cp_state.all_model_checkpoint_paths
# Start from the latest path
paths = reversed(paths)
for restore_dir in paths:
try:
saver.restore(sess, restore_dir)
except tf.errors.NotFoundError as err:
continue
return
class Data(object):
def __init__(self, data_dir, file_list, batch_size):
super(Data, self).__init__()
self._data_dir = data_dir
self.batch_size = batch_size
with open(os.path.join(self._data_dir, file_list)) as f:
self._files = f.readlines()
self._files = [f.strip() for f in self._files]
self._i = -1
self.label_map = {
"a": 0,
"b": 1,
"c": 2,
"d": 3,
"e": 4,
}
def get(self):
res = self._get_one()
for k, v in res.iteritems():
res[k] = np.expand_dims(v, axis=0)
for b in range(self.batch_size-1):
datum = self._get_one()
for k, v in datum.iteritems():
res[k] = np.append(res[k], np.expand_dims(v, axis=0), axis=0)
return res
def _get_one(self):
self._i += 1
if self._i >= len(self._files):
self._i = 0
fname = self._files[self._i]
fpath = self._data_dir + "/" + fname
img = PIL.Image.open(fpath)
exif_dict = piexif.load(fpath)
user_comment = piexif.helper.UserComment.load(exif_dict["Exif"][piexif.ExifIFD.UserComment])
user_comment = json.loads(user_comment)
user_comment = stringify_dict(user_comment)
processed_img = self._preprocess_img(img)
res = {
"name": fname,
"label": np.array(self.label_map[user_comment["plantName"]]),
"len_cm": np.array(user_comment["lengthInCentiMeter"] / 10),
"len_pixel": np.array(user_comment["lengthInPixel"] / 1000),
"img": np.array(processed_img),
}
return res
def _preprocess_img(self, img):
width, height = img.size # Get dimensions
small = width
if height < width:
small = height
new_width = small
new_height = small
left = (width - new_width)/2
top = (height - new_height)/2
right = (width + new_width)/2
bottom = (height + new_height)/2
cropped_img = img.crop((left, top, right, bottom))
scaled_img = cropped_img.resize((128, 128), PIL.Image.ANTIALIAS)
return scaled_img
def size(self):
return len(self._files)
def _log_trainable_variables():
total_params = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
var_params = 1
for dim in shape:
var_params *= dim.value
tf.logging.info("%s %s: %s", variable.name, shape, var_params)
total_params += var_params
tf.logging.info("total parameters: %s", total_params)
class Logger(object):
def __init__(self, wid, log_file, period_secs):
super(Logger, self).__init__()
self._wid = wid
self._log_file = log_file
self._period_secs = period_secs
self._last_log_time = -1
self._lock = threading.Lock()
self._vals = {}
def set_vals(self, vals):
with self._lock:
for k, v in vals.iteritems():
if v is not None:
self._vals[k] = v
else:
self._vals.pop(k, None)
def log(self, global_step):
if time.time() - self._last_log_time < self._period_secs:
return
self._last_log_time = time.time()
self._vals["wid"] = self._wid
self._vals["time"] = time.time()
self._vals["step"] = global_step
with open(self._log_file, "a") as f:
jstr = json.dumps(self._vals)
f.write(jstr+"\n")
class Evaluator(object):
def __init__(self, env, agent, logger, log_prefix, loop_num, period_secs, save_path, sess):
super(Evaluator, self).__init__()
self._env = env
self._agent = agent
self._logger = logger
self._log_prefix = log_prefix
self._loop_num = loop_num
self._period_secs = period_secs
self._save_path = save_path
self._sess = sess
self._last_eval_time = -1
if self._save_path != "":
self._best_score = -9999999999
save_dir = os.path.dirname(self._save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
self._saver = tf.train.Saver(max_to_keep=1)
def evaluate(self):
if time.time() - self._last_eval_time < self._period_secs:
return
self._last_eval_time = time.time()
correct_num = 0
for i in range(self._loop_num):
obs = self._env.get()
test_res = self._agent.test(obs)
logits = test_res["logits"]
pred = np.argmax(logits, axis=1)
correct_num += np.sum(np.equal(pred, obs["label"]))
correct_percentage = float(correct_num) / (self._loop_num * self._env.batch_size)
raw_log_vals = {
"correct_percentage": correct_percentage,
"loss": test_res["loss"].tolist(),
"sample_name": obs["name"].tolist(),
"sample_pred": pred.tolist(),
"sample_logits": logits.tolist(),
}
log_vals = {}
for k, v in raw_log_vals.iteritems():
log_vals[self._log_prefix + k] = v
self._logger.set_vals(log_vals)
if self._save_path != "":
if correct_percentage > self._best_score:
self._best_score = correct_percentage
global_step = self._agent.step_cnt()
self._saver.save(self._sess, self._save_path, global_step=global_step)
class PeriodicSaver(object):
def __init__(self, save_path, period_secs):
super(PeriodicSaver, self).__init__()
self._save_path = save_path
self._period_secs = period_secs
self.session = None
self._saver = tf.train.Saver()
self._last_save_time = -1
save_dir = os.path.dirname(self._save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
def save(self, global_step):
if time.time() - self._last_save_time < self._period_secs:
return
self._last_save_time = time.time()
self._saver.save(self.session, self._save_path+"/a", global_step=global_step)
def main():
tf.logging.set_verbosity(tf.logging.INFO)
wid = "test_{}".format(int(time.time()))
tf.logging.info("work ID: %s", wid)
exp_dir = "/tmp/plant/{}".format(wid)
log_period_secs = 3
logger = Logger(wid, exp_dir+"/log", log_period_secs)
data_dir = "/home/denkeni/plant/data"
data_dir = "/Users/awaw/me/plant/data"
batch_size = 5
train_env = Data(data_dir, "train", batch_size)
test_env = Data(data_dir, "test", batch_size)
agent = simple.Agent(test_env)
var_init_op = tf.global_variables_initializer()
cp_path = exp_dir+"/checkpoint"
save_period_secs = 3
saver = PeriodicSaver(cp_path, save_period_secs)
sess_conf = tf.ConfigProto(log_device_placement=False)
with tf.Session(config=sess_conf) as sess:
sess.run([var_init_op])
_log_trainable_variables()
train_evaluate_period_secs = 3
train_evaluator = Evaluator(train_env, agent, logger, "train_", 1, train_evaluate_period_secs, "", sess)
evaluate_loop_num = int(np.ceil(float(test_env.size()) / test_env.batch_size))
evaluate_period_secs = 3
evaluate_save_path = exp_dir+"/eval_cp/a"
evaluator = Evaluator(test_env, agent, logger, "eval_", evaluate_loop_num, evaluate_period_secs, evaluate_save_path, sess)
agent.session = sess
saver.session = sess
# agent.gen_mlmodel2("/tmp/plant/no_len_cm_1507701074/checkpoint/a-915", "/tmp/plant/no_len_cm_1507701074.mlmodel")
while True:
obs = train_env.get()
#obs["len_cm"] = np.zeros(obs["len_cm"].shape)
agent.step(obs)
train_evaluator.evaluate()
evaluator.evaluate()
logger.log(agent.step_cnt())
saver.save(agent.step_cnt())
if __name__ == "__main__":
main()