-
Notifications
You must be signed in to change notification settings - Fork 1
/
decodeTrans.py
41 lines (35 loc) · 1.87 KB
/
decodeTrans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch.nn as nn
from Multihead_Attention import MultiHeadedAttention
from SubLayerConnection import SublayerConnection
from DenseLayer import DenseLayer
from ConvolutionForward import ConvolutionLayer
from Multihead_Combination import MultiHeadedCombination
from gcnn import GCNN
class decodeTransformerBlock(nn.Module):
"""
Bidirectional Encoder = Transformer (self-attention)
Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
"""
def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
"""
:param hidden: hidden size of transformer
:param attn_heads: head sizes of multi-head attention
:param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
:param dropout: dropout rate
"""
super().__init__()
self.attention1 = MultiHeadedAttention(h=attn_heads, d_model=hidden)
self.attention2 = MultiHeadedAttention(h=attn_heads, d_model=hidden)
self.feed_forward = DenseLayer(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
self.sublayer1 = SublayerConnection(size=hidden, dropout=dropout)
self.sublayer3 = SublayerConnection(size=hidden, dropout=dropout)
self.sublayer4 = SublayerConnection(size=hidden, dropout=dropout)
self.dropout = nn.Dropout(p=dropout)
#self.Tconv_forward = GCNN(dmodel=hidden)
def forward(self, x, mask, inputleft, leftmask, inputleft2, leftmask2, inputAd):
x = self.sublayer1(x, lambda _x: self.attention1.forward(_x, inputleft, inputleft, mask=leftmask))
x = self.sublayer3(x, lambda _x: self.attention2.forward(_x, inputleft2, inputleft2, mask=leftmask2))
x = self.sublayer4(x, self.feed_forward)
#print(inputAd.size())
#x = self.sublayer4(x, lambda _x: self.Tconv_forward.forward(_x, inputleft, inputAd))
return self.dropout(x)