-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
executable file
·168 lines (142 loc) · 5.83 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/bin/python
import os
import argparse
import tagger
def read_twitter(dname="pos", test=False):
"""Read the twitter train, dev, and test data from the default location.
The returned object contains {train, test, dev}_{sents, labels}.
"""
class Data: pass
data = Data()
# training data
data.train_sents, data.train_labels = read_file("data/twitter_train." + dname)
data.dev_sents, data.dev_labels = read_file("data/twitter_dev." + dname)
# test data
if test:
data.test_sents, data.test_labels = read_file("data/twitter_test." + dname)
print "Twitter %s data loaded." % dname
print ".. # train sents", len(data.train_sents)
print ".. # dev sents", len(data.dev_sents)
if test:
print ".. # test sents", len(data.test_sents)
return data
def read_file(filename):
"""Read the file in CONLL format, assumes one token and label per line."""
sents = []
labels = []
with open(filename, 'r') as f:
curr_sent = []
curr_labels = []
for line in f.readlines():
if len(line.strip()) == 0:
# sometimes there are empty sentences?
if len(curr_sent) != 0:
# end of sentence
sents.append(curr_sent)
labels.append(curr_labels)
curr_sent = []
curr_labels = []
else:
token, label = line.split()
curr_sent.append(unicode(token, 'utf-8'))
curr_labels.append(label)
return sents, labels
def write_preds(fname, sents, labels, preds):
"""Writes the output of a sentence in CONLL format, including predictions."""
f = open(fname, "w")
assert len(sents) == len(labels)
assert len(sents) == len(preds)
for i in xrange(len(sents)):
write_sent(f, sents[i], labels[i], preds[i])
f.close()
def write_sent(f, toks, labels, pred = None):
"""Writes the output of a sentence in CONLL format, including predictions (if pred is not None)"""
for i in xrange(len(toks)):
f.write(toks[i].encode('utf-8') + "\t" + labels[i])
if pred is not None:
f.write("\t" + pred[i])
f.write("\n")
f.write("\n")
def file_splitter(all_file, train_file, dev_file):
"""Splits the labeled data into train and dev, sentence-wise."""
import random
all_sents, all_labels = read_file(all_file)
train_f = open(train_file, "w")
dev_f = open(dev_file, "w")
seed = 0
dev_prop = 0.25
rnd = random.Random(seed)
for i in xrange(len(all_sents)):
if rnd.random() < dev_prop:
write_sent(dev_f, all_sents[i], all_labels[i])
else:
write_sent(train_f, all_sents[i], all_labels[i])
train_f.close()
dev_f.close()
def synthetic_data():
"""A very simple, three sentence dataset, that tests some generalization."""
class Data: pass
data = Data()
data.train_sents = [
[ "Obama", "is", "awesome" , "."],
[ "Michelle", "is", "also", "awesome" , "."],
[ "Awesome", "is", "Obama", "and", "Michelle", "."]
]
data.train_labels = [
[ "PER", "O", "ADJ" , "END"],
[ "PER", "O", "O", "ADJ" , "END"],
[ "ADJ", "O", "PER", "O", "PER", "END"]
]
data.dev_sents = [
[ "Michelle", "is", "awesome" , "."],
[ "Obama", "is", "also", "awesome" , "."],
[ "Good", "is", "Michelle", "and", "Obama", "."]
]
data.dev_labels = [
[ "PER", "O", "ADJ" , "END"],
[ "PER", "O", "O", "ADJ" , "END"],
[ "ADJ", "O", "PER", "O", "PER", "END"]
]
return data
def maybe_create_path(path):
if not os.path.exists(path):
os.mkdir(path)
print ("Created a path: %s"%(path))
if __name__ == "__main__":
# Do no run, the following function was used to generate the splits
# file_splitter("data/twitter_train_all.pos", "data/twitter_train.pos", "data/twitter_dev.pos")
dname = 'pos'
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-m", "--model", dest='model',
help="'LR'/'lr' for logistic regression tagger\n'CRF'/'crf' for conditional random field tagger", default="lr")
parser.add_argument('--test', dest='test',
help="Make prediction for test dataset", action="store_true")
base_path_predictions = './predictions'
maybe_create_path(base_path_predictions)
args = parser.parse_args()
model = args.model
use_test = args.test
data = read_twitter(test=use_test)
if model == 'crf':
tagger = tagger.CRFPerceptron()
else:
tagger = tagger.LogisticRegressionTagger()
# Train the tagger
tagger.fit_data(data.train_sents, data.train_labels)
# Evaluation (also writes out predictions)
print "### Train evaluation"
data.train_preds = tagger.evaluate_data(data.train_sents, data.train_labels)
write_preds("%s/twitter_train.%s.pred" % (base_path_predictions, model),
data.train_sents,
data.train_labels,
data.train_preds)
print "### Dev evaluation"
data.dev_preds = tagger.evaluate_data(data.dev_sents, data.dev_labels)
write_preds("%s/twitter_dev.%s.pred" % (base_path_predictions, model),
data.dev_sents, data.dev_labels, data.dev_preds)
# Following is commented, only useful once test data is available.
if use_test:
print "### Generating Test predictions"
data.test_preds = tagger.evaluate_data(data.test_sents, data.test_labels, quite=True)
write_preds("%s/twitter_test.%s.pred" % (base_path_predictions, model),
data.test_sents, data.test_labels, data.test_preds)