forked from jakugel/oct-stargardtretina-seg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_losses.py
99 lines (72 loc) · 3.25 KB
/
custom_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from keras import backend as K
from keras.losses import binary_crossentropy
def weighted_categorical_crossentropy(weights):
"""
A weighted version of keras.objectives.categorical_crossentropy
Variables:
weights: numpy array of shape (C,) where C is the number of classes
Usage:
weights = np.array([0.5,2,10]) # Class one at 0.5, class 2 twice the normal weights, class 3 10x.
loss = weighted_categorical_crossentropy(weights)
model.compile(loss=loss,optimizer='adam')
"""
weights = K.variable(weights)
def loss(y_true, y_pred):
# scale predictions so that the class probas of each sample sum to 1
y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
# clip to prevent NaN's and Inf's
y_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())
# calc
loss = y_true * K.log(y_pred) * weights
loss = -K.sum(loss, -1)
return loss
return loss
def focal_loss(target, output, gamma=2):
output /= K.sum(output, axis=-1, keepdims=True)
eps = K.epsilon()
output = K.clip(output, eps, 1. - eps)
return -K.sum(K.pow(1. - output, gamma) * target * K.log(output),
axis=-1)
def dice_loss(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = y_true_f * y_pred_f
score = (2. * K.sum(intersection) + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return 1. - score
def bce_dice_loss(y_true, y_pred):
return binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
def bce_focal_loss(y_true, y_pred):
return binary_crossentropy(y_true, y_pred) + focal_loss(y_true, y_pred)
def focal_dice_loss(y_true, y_pred):
return dice_loss(y_true, y_pred) + focal_loss(y_true, y_pred)
def bce_logdice_loss(y_true, y_pred):
return binary_crossentropy(y_true, y_pred) - K.log(1. - dice_loss(y_true, y_pred))
def weighted_bce_loss(y_true, y_pred, weight):
epsilon = 1e-7
y_pred = K.clip(y_pred, epsilon, 1. - epsilon)
logit_y_pred = K.log(y_pred / (1. - y_pred))
loss = weight * (logit_y_pred * (1. - y_true) +
K.log(1. + K.exp(-K.abs(logit_y_pred))) + K.maximum(-logit_y_pred, 0.))
return K.sum(loss) / K.sum(weight)
def weighted_dice_loss(y_true, y_pred, weight):
smooth = 1.
w, m1, m2 = weight, y_true, y_pred
intersection = (m1 * m2)
score = (2. * K.sum(w * intersection) + smooth) / (K.sum(w * m1) + K.sum(w * m2) + smooth)
loss = 1. - K.sum(score)
return loss
def weighted_bce_dice_loss(y_true, y_pred):
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# if we want to get same size of output, kernel size must be odd
averaged_mask = K.pool2d(
y_true, pool_size=(50, 50), strides=(1, 1), padding='same', pool_mode='avg')
weight = K.ones_like(averaged_mask)
w0 = K.sum(weight)
weight = 5. * K.exp(-5. * K.abs(averaged_mask - 0.5))
w1 = K.sum(weight)
weight *= (w0 / w1)
loss = weighted_bce_loss(y_true, y_pred, weight) + dice_loss(y_true, y_pred)
return loss
custom_loss_objects = {"bce_dice_loss": bce_dice_loss, "dice_loss": dice_loss, "focal_loss": focal_loss, "bce_focal_loss": bce_focal_loss, "focal_dice_loss": focal_dice_loss}