-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelay.m
264 lines (234 loc) · 6.42 KB
/
relay.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
clc
clear
format shortg
addpath(genpath('src'))
global t y r e u pwm k
%TODO: use Gz to grab values
%% CONFIGURAÇÃO
% Adicione o nome de variáveis que queira salvar
toSave = {'t', 'y', 'r', 'e', 'u', 'pwm', 'ping', 'T'};
subfolder = 'relay_combi';
T = 0.02; %tempo de amostragem
o = 3; %início de amostragem
n = 2051; %número de amostras
t = (0:(n-1))*T; %vetor de tempo
%% I/O
%caso não ache a planta, o programa simula pela função de transferência Gz
s = tf('s');
z = tf('z', T, 'variable', 'z^-1');
Gs = 23932/(s^3 + 4.7103*s^2 + 5.0726*s);
Gz = c2d(Gs, 0.02);
Gz.Variable = 'z^-1';
C1 = (0.0008447*s + 0.01954)/(s + 5.055);
C2 = 0.001867*s;
Gf = minreal(C1*Gs/(1 + (C1+C2)*Gs));
Gz = c2d(Gf, 0.02);
Gz.Variable = 'z^-1';
% Gz = z^-1*(0.09142 + 0.2228*z^-1)/(1 - 0.6893*z^-1 - 0.108*z^-2);
% Gs = 0.01595*2/3/s;
% Gz = c2d(Gs, T);
%ajuste a COM e o baud rate de 19200, em Gerenciador de Dispositivos
[stop, read, write] = startcom('COM5', Gz, 0.00);
% d = 30.0023, 12.6388, eo = -4.4156e-13, a = 71.51,
% w = 4.6047, Gjw = 1.872 <-2.9639
%% ESTADO INCIAL
[r, rf, rd, rq, y, e, er, u, ur, pwm, f] = deal(zeros(n, 1));
ping = nan(n, 1);
t0 = tic;
%% MISC
umax = 1.0; % maximum pwm
set = 0.0; % fixed setpoint
%% RELAY
d = 0.01; % u amplitude
off = 0.0; % u mean
eps = 3.0; % histeresis
ref = 0; % initial reference
edge_comb = 4; % comb waits at least 4 edges
d = 1;
eps = 0.5;
%robust: unaffected by noises or disturbances
%resilient: retries itself after stuck for too long
%anti-fragile: updates the mean reference after a try or switch
nr = 0;
up = 1;
edge = 0;
semi = [0; 0];
saw = 1;
retry = 0;
ymax = ref;
ymin = ref;
rmax = ref;
rmin = ref;
%% FILTER
% higher quality: sensible to noise. lower quality: robust to disturbances
% on low epsilon it may be useful to increase the quality (precise switch)
% on higher epsilon it may be useful to reduce the quality (fast settling)
QF = 5.0; %^quality, ^settling time, ^precision
%for QF > 5.0, phase error > 50/QF° for a band equal the 1st harmonic.
%for QF = 1.0, there is a time delay
%calculates comb filter coefficient based on filter quality
[kf, qf] = deal(o);
af = 1 / cos(pi / (2 * QF)) + cos(pi / (2 * QF));
af = af + sqrt(af^2 - 4);
af = (af - sqrt(af^2 - 4)) / 2;
a = af;
%% PID
kp=7.987*10^-4;td=0.3487;ti=0.0;
%calculates controllers' numerator
gd = @(kp, td) [kp*td/T -kp*2*td/T kp*td/T];
gpi = @(kp, ti) [kp*(1 + T/(2*ti)) -kp*(1 - T/(2*ti))];
gpid = @(kp, td, ti) [kp*(1 + T/(2*ti) + td/T) -kp*(1 + 2*td/T - T/(2*ti)) kp*td/T];
%gains
ke = flip(gd(kp,td));
ku = 1.0;
o = 205;
%% LOOP DE CONTROLE
for k = o:n
%LEITURA
time = tic;
y(k) = read();
%REFERÊNCIA
% if kf < (k - semi(~up+1))
% kf = kf + 1;
% elseif kf > (k - semi(~up+1))
% kf = kf - 1;
% end
foo(k,:) = semi;
kf = k - semi(~up+1);
f(k) = rmax + eps < ymax && rmin - eps > ymin;
% af = f(k)*a;
af = a;
rd(k) = -af * rd(kf) + (y(k) + y(kf)) * (1 + af) / 2; % type 0
rd(k) = -af * rd(kf) + 1/4*((3 + af)*y(k) + 2*(1 + af)*y(kf) + (af - 1)*y(k-nr)); % type 1
rf(k) = (rd(k) + rd(kf))/2;
% if semi(up+1) > nr && abs(set - rd(k)) > eps
% semi(~up+1) = semi(~up+1) + 1;
% semi(up+1) = semi(up+1) - 1;
% rf(k) = rd(k);
% % rd(k) = rd(k-1); % type 0
% end
if edge < edge_comb
rd(k) = set;
end
r(k) = rd(k);
if ~up
ymax = max(y(k), ymax);
rmax = max(r(k), rmax);
else
ymin = min(y(k), ymin);
rmin = min(r(k), rmin);
end
% kf = k - semi(~up+1);
% if semi(up+1) < nr
% rd(k) = -af * rd(kf) + (y(k) + y(kf)) * (1 + af) / 2; %type 0
% rd(k) = -af * rd(kf) + 1/4*((3 + af)*y(k) + 2*(1 + af)*y(kf) + (af - 1)*y(k-nr)); %type 1
% elseif (yp && ~up) || (~yp && up)
% retry = retry + 1;
% if up
% ref = ymin;
% else
% ref = ymax;
% end
% rd(k) = ref;
% up = ~up;
% else
% rd(k) = rd(k-1);
% end
% rf(k) = (rd(k) + rd(kf))/2;
% if ~up
% ymax = max(y(k), ymax);
% rmax = max(rd(k), rmax);
% else
% ymin = min(y(k), ymin);
% rmin = min(rd(k), rmin);
% end
% %COMB FILTER
% f(k) = rmax + eps < ymax && rmin - eps > ymin; % not good
% af = f(k)*abs(af) - ~f(k)*abs(af);
% r(k) = rd(k);
%ERRO
e(k) = r(k) - y(k);
%CONTROLE
%MQNR
% if k < n/2
% u(k) = 50 + 5*randn();
% else
% u(k) = 80 + 5*randn();
% end
if (e(k) >= eps && ~up) || (e(k) <= -eps && up)
semi(up + 1) = saw;
nr = semi(~up+1) + semi(up+1);
edge = edge + 1;
saw = 1;
if up
ymax = y(k);
rmax = r(k);
else
ymin = y(k);
rmin = r(k);
end
up = ~up;
rf(k) = rd(k);
else
saw = saw + 1;
end
% if semi(up+1) > nr
% if abs(e(k)) < eps
% semi(~up+1) = semi(~up+1) + 1;
% semi(up+1) = semi(up+1) + 1;
% end
% semi(up+1) = semi(up+1) - 1;
% rf(k) = rd(k);
% end
% if (up && (e(k) - e(k-1))/T > 10.0) || (~up && (e(k) - e(k-1))/T < -10.0)
% d = 0;
% else
% d = 0.01;
% end
%RELAY
er(k) = set - rd(k);
% ur(k) = ku*ur(k-1) + ke*er(k-2:k);
% ur(k) = min(max(ur(k), -umax+d), umax-d); % saturando o sinal de controle, fica não linear
u(k) = ur(k) + up*d - ~up*d - (k>1037)*d;
% u(k) = off + up*d - ~up*d;
%PID
% u(k) = ku*u(k-1) + ke*e(k-2:k);
%STEP
% u(k) = 70;
%SATURAÇÃO
% pwm(k) = min(max(u(k), -umax), umax);
pwm(k) = u(k);
%ESCRITA
write(pwm(k));
ping(k) = toc(time);
%DELAY
if isa(stop, 'function_handle')
while toc(time) < T
end
end
%STOP
% if k > 100
% break
% end
end
stop();
fprintf('Duração: %f seconds\n', toc(t0) - toc(time));
if sum(ping(1:end-1)' > T)
disp('In-loop latency is too high! Increase your sampling time.')
end
%% PLOT & SAVE
fig = plotudo(t(o:k), y, r, e, u, pwm, 0, 0, 0);
if isa(stop, 'function_handle')
folder = ['pratica/' subfolder];
else
folder = ['teoria/' subfolder];
end
if ~exist(folder, 'dir')
mkdir(folder);
end
date = datestr(datetime('now'));
date(date == '-' | date == ':') = '_';
path = [folder '/' date];
save([path '.mat'], toSave{:})
saveas(fig, [path '.fig'])
disp(['Plant: ' folder ' Saved at: ' path])