-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmodels.py
101 lines (79 loc) · 3.51 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.nn as nn
import math
class RNN(nn.Module):
def __init__(self, num_features, hidden_units, num_layers, output_size, dropout_rate):
super().__init__()
self.num_features = num_features
# Defining the number of layers and the nodes in each layer
self.hidden_units = hidden_units
self.num_layers = num_layers
self.output_size = output_size
self.dropout = dropout_rate
# RNN layers
self.rnn = nn.RNN(
input_size=num_features,
hidden_size=hidden_units,
batch_first=True,
num_layers=num_layers,
dropout=dropout_rate
)
self.linear = nn.Linear(in_features=self.hidden_units, out_features=self.output_size)
def forward(self, x):
batch_size = x.shape[0]
h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()
_, hn = self.rnn(x, h0)
out = self.linear(hn[0]).flatten() # First dim of Hn is num_layers, which is set to 1 above.
return out
class LSTM(nn.Module):
def __init__(self, num_features, hidden_units, num_layers, output_size, dropout_rate):
super().__init__()
self.num_features = num_features #
# Defining the number of layers and the nodes in each layer
self.hidden_units = hidden_units
self.num_layers = num_layers
self.output_size = output_size
self.dropout = dropout_rate
# LSTM layers
self.lstm = nn.LSTM(
input_size=num_features,
hidden_size=hidden_units,
batch_first=True,
num_layers=num_layers,
dropout=dropout_rate
)
# Fully connected layer
self.linear = nn.Linear(in_features=self.hidden_units, out_features=self.output_size)
def forward(self, x):
batch_size = x.shape[0]
h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()
c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()
_, (hn, _) = self.lstm(x, (h0, c0))
out = self.linear(hn[0]).flatten() # First dim of Hn is num_layers, which is set to 1 above
return out
class GRU(nn.Module):
def __init__(self, num_features, hidden_units, num_layers, output_size, dropout_rate):
self.num_features = num_features
# Defining the number of layers and the nodes in each layer
self.hidden_units = hidden_units
self.num_layers = num_layers
self.output_size = output_size
self.dropout = dropout_rate
# GRU layers
self.gru = nn.GRU(
input_size=num_features,
hidden_size=hidden_units,
batch_first=True,
num_layers=num_layers,
dropout=dropout_rate
)
# Fully connected layer
self.linear = nn.Linear(in_features=self.hidden_units, out_features=self.output_size)
def forward(self, x):
batch_size = x.shape[0]
# Initializing hidden state for first input with zeros
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_()
# Forward propagation by passing in the input and hidden state into the model
out, _ = self.gru(x, h0.detach())
out = self.linear(hn[0]).flatten() # First dim of Hn is num_layers, which is set to 1 above.
return out